# **Supplementary Information**

# Thermally-Promoted Post-synthetic Pummerer Chemistry in a Sulfoxide-functionalized Metal-Organic Framework

Macguire R. Bryant,<sup>*a*</sup> and Christopher Richardson<sup>\**a*</sup>

<sup>a</sup> School of Chemistry, University of Wollongong, Wollongong NSW 2522, Australia

## **Table of Contents**

| 1. | PXRD Data                                                                         | . 2 |
|----|-----------------------------------------------------------------------------------|-----|
| 2. | Disproportionation reaction of $H_2L^1$ to $H_2L^2$ and $H_2L^3$ during synthesis | 3   |
| 3. | TG-DTA Data                                                                       | 4   |
| 4. | NMR Spectra for $H_2L^1$                                                          | 6   |
| 5. | <sup>1</sup> H NMR Spectra for Digested Samples                                   | 7   |
| 6. | Mass Spectrometry Data                                                            | 8   |
| 7. | BET Surface Area Calculations                                                     | 9   |
| 8. | References                                                                        | .9  |

## 1. PXRD Data



Figure S 1: An enlarged image of the PXRD patterns shown in the manuscript of 1 (red), 2 (blue) and of the sulfone sample<sup>1</sup> (black).

## 2. Disproportionation reaction of $H_2L^1$ to $H_2L^2$ and $H_2L^3$ during synthesis

The presence of sulfone can be explained by considering the diagram below (Fig S 2). During synthesis two sulfoxide ligands come together and undergo a disproportionation reaction.<sup>2-5</sup> The sulfide that is produced is then oxidized regenerating sulfoxide. Direct oxidation of sulfides to sulfoxides is easier to achieve than direct oxidation of sulfoxides to sulfones.<sup>3, 5</sup>



Figure S 2: Disproportionation chemistry by which  $H_2L^2$  can be formed during solvothermal synthesis and be incorporated into the crystals of MOF 1.

#### 3. TG-DTA Data



**Figure S 3:** TG-DTA of H<sub>2</sub>L<sup>1</sup>, holding at 245 °C for 30 minutes. Blue line is the TG curve; red line is DT curve; green line is temperature program.



**Figure S 4:** An enlarged image of the TG-DTA of **1** shown in the manuscript, with weight loss calculations by TA-60 software. Blue line is the TG curve; red line is DT curve.



Figure S 5: TG-DTA of 2. Blue line is the TG curve; red line is DT curve.



**Figure S 7:** <sup>13</sup>C NMR spectrum of 2-((methylsulfinyl)methyl)-[1, 1'-biphenyl]-4, 4'-dicarboxylic acid,  $H_2L^1$ ; solvent:  $d_6$ -DMSO.

## 5. <sup>1</sup>H NMR Spectra for Digested Samples

For  $H_2L^1$  and  $H_2L^2$ , the  $CH_2$  protons were used for integration. For  $H_2L^3$ , the  $CH_3$  protons were used. For  $H_2L^4$ , the aldehyde CH proton was used. Peaks used in integration are highlighted;  $H_2L^1$  (green cross),  $H_2L^2$  (red asterisk),  $H_2L^3$  (orange circle),  $H_2L^4$ (blue triangle).



**Figure S 8:** <sup>1</sup>H NMR spectra of samples digested in DCl and  $d_{6}$ -DMSO of **1** (a), and **2** after 30 minutes (b), 180 minutes (c), and 300 minutes (d) at 240 °C.

 $H_2L^3$ 





NMR data; Chem. Commun., 2009, 4218-4220.



NMR data; Angew. Chemie Int. Ed., 2008, **47**, 8482-8486.

#### 6. Mass Spectrometry Data



**Figure S 9:** Low-resolution negative-mode electrospray ionization mass spectrum of **1** heated to 240 °C for 30 mins. Top: Spectrum from 100 to 1000 m/z, Bottom: Expanded view of spectrum from 100 to 500 m/z.  $[H_2 L^1 - H]^- = 317 m/z$ ,  $[H_2 L^2 - H]^- = 333 m/z$ ,  $[H_2 L^3 - H]^- = 301 m/z$ ,  $[H_2 L^4 - H]^- = 269 m/z$ .



- CO<sub>2</sub>H Chemical Formula: C<sub>16</sub>H<sub>14</sub>O<sub>5</sub>S Exact Mass: 318.1

Chemical Formula: C16H14O6S

Exact Mass: 334.1





Chemical Formula: C<sub>16</sub>H<sub>14</sub>O<sub>4</sub>S Chemical Exact Mass: 302.1 Exa

Chemical Formula: C<sub>15</sub>H<sub>10</sub>O<sub>5</sub> Exact Mass: 270.1

### 7. BET Surface Area Calculations

| BET summary for 1          |               |                     |  |
|----------------------------|---------------|---------------------|--|
| Slope                      | 1.976         |                     |  |
| Intercept                  | 1.89e-03      |                     |  |
| Correlation coefficient, r | 0.999978      |                     |  |
| C constant                 | 1046.492      |                     |  |
| Surface Area               | 1760.609 m²/g |                     |  |
| Relative Pressure          | Volume @ STP  | 1 / [W((Po/P) - 1)] |  |
| 9.00e-03                   | 365.5448      | 1.99e-02            |  |
| 1.00e-02                   | 371.2658      | 2.19e-02            |  |
| 1.20e-02                   | 379.3726      | 2.57e-02            |  |
| 1.52e-02                   | 388.2207      | 3.19e-02            |  |
| 2.66e-02                   | 403.8505      | 5.42e-02            |  |
| 4.03e-02                   | 413.2205      | 8.14e-02            |  |
| 5.27e-02                   | 418.664       | 1.06e-01            |  |

| BET summary for 2          |               |                     |  |
|----------------------------|---------------|---------------------|--|
| Slope                      | 1.52          |                     |  |
| Intercept                  | 1.58e-03      |                     |  |
| Correlation coefficient, r | 0.999981      |                     |  |
| C constant                 | 962.461       |                     |  |
| Surface Area               | 2289.411 m²/g |                     |  |
| Relative Pressure          | Volume @ STP  | 1 / [W((Po/P) - 1)] |  |
| 8.11e-03                   | 465.9707      | 1.40e-02            |  |
| 9.02e-03                   | 474.4855      | 1.53e-02            |  |
| 1.00e-02                   | 481.8444      | 1.68e-02            |  |
| 1.20e-02                   | 491.6319      | 1.98e-02            |  |
| 1.53e-02                   | 503.1944      | 2.47e-02            |  |
| 2.75e-02                   | 523.4984      | 4.32e-02            |  |
| 4.00e-02                   | 533.5512      | 6.25e-02            |  |

#### 8. References

- 1. A. D. Burrows, C. G. Frost, M. F. Mahon and C. Richardson, *Chem. Commun.*, 2009, 4218-4220.
- 2. H. H. Szmant, in *Organic Sulfur Compounds*, ed. N. Kharasch, Pergamon, 1961, pp. 154-169.
- 3. USA Pat., US2870215 A, 1959.
- 4. A. Wzorek, K. D. Klika, J. Drabowicz, A. Sato, J. L. Acena and V. A. Soloshonok, *Org. Biomol. Chem.*, 2014, **12**, 4738-4746.
- 5. L. Field and G. T. Bowman, J. Org. Chem., 1981, 46, 2771-2775.