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Scheme S1 Selected ligands that act as a pillar in the target frameworks.
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Fig. S1 The coordination modes of the aip?~ ligand in 1 (a), 2 (b), and 3 (c).[symmetry
code: 1, (A) X, -y+3/2, z-1/2; (B) x, -y+1/2, z-1/2; 2, (C) -x+1, -y, -z+1; (D) X, -y+3/2,
z+1/2; 3, (E) x-1, ¥, z; (F) x, y+1,Z; (G) x-1,y-1, 2]

Fig. S2 A graphical representation of the (6,3)-net topology in 1-3. (purple: Zn atoms;
gray: the geometry centers of the aip?™ rings).
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Fig. S3 (a) The smaller channels of 1 were observed along the ¢ axis. (b) A perspective
view of the DMF (yellow) molecules within the 1D channels. (c) Superimposed space-
filling representation of 1 showing one-dimensional channels.
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Fig. S4 (a) The smaller channels of 2 were observed along the c axis. (b) A perspective
view of the DMF (yellow) and MeOH (brown) molecules within the 1D channels. (c)
Superimposed space-filling representation of 2 showing one-dimensional channels.
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Fig. S5 (a) A perspective view of the DMF (yellow) and H20O (red) molecules within
the 1D channels. (b) Superimposed space-filling representation of 3 showing one-
dimensional channels.



Fig. S6 A view of hydrogen bonding (sky blue dotted lines) and n—n stacking (green
dotted lines) interactions between the 2D layers in 1 (a), 2 (b), and 3 (c).



Fig. S7 View of the disordered tpim ligand and uncoordinated pyridyl group in 3.

Fig. S8 The 2-D pillared-bilayer network of compound 3 extended by n—=n stacking
interactions from the pyridyl and other aromatic rings.
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Fig. S9 Thermogravimetric (TG) diagrams for 1-3.
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Fig. S10 Simulated PXRD patterns from the crystal structure (black) and the as-
synthesized (red) sample for compound 1.

—— As-synthesized

— Simulated
._JL—AJ_A.J_J\_A.A_LJ P N
Elw ‘\[0 1l5 2ID 2'5 3|0 3I5 40
26(degree)

Fig. S11 Simulated PXRD patterns from the crystal structure (black) and the as-
synthesized (red) sample for compound 2.
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Fig. S12 Simulated PXRD patterns from the crystal structure (black) and the as-
synthesized (red) sample for compound 3.
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Fig. S13 Simulated PXRD patterns from the as-synthesized (red), MeOH-exchanged
(blue) and activated sample (green) for compound 1.
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Fig. S14 Simulated PXRD patterns from the as-synthesized (red), MeOH-exchanged
(blue) and activated sample (green) for compound 2.
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Fig. S15 Simulated PXRD patterns from the as-synthesized (red), MeOH-exchanged
(blue) and activated sample (green) for compound 3.
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Fig. S16 Thermogravimetric (TG) diagrams for the as-synthesized (black) and the
MeOH-exchanged (red) sample in 1-3.

10



—— methanol-exchanged

————
4000 3500

I e e e LN A e e e e e e IR e e e e
3000 2500 2000 1500 1000 500

Wavenumber (cm™')
cpd 2
—— methanol-exchanged
LN B B S L B B R S N SO BN S BN [ AN S S S [N R S B R NN B B S NN L S S S B
4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm™')
cpd 3
methanol-exchanged
T T 1 7T LI T 1 r v v v ¥ T T [ v 1| T T T T
4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm ')

Fig. S17 IR spectra of 1-3.
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Fig. S18 N adsorption isotherms of 1-3 at 77 K.

Estimation of the isosteric heats of gas adsorption
A virial-type expression comprising the temperature-independent parameters a; and b;
was employed to calculate the enthalpies of adsorption for CO> (at 273 K and 298 K)

on 1-3. In each case, the data were fitted using the equation 1:

m n
lnP=lnN+1/TZal-Ni + Zbizvi )
i=0 i=0

Here, P is the pressure expressed in torr, N is the amount adsorbed in mmol/g, T is the
temperature in K, a;j and b; are virial coefficients, and m, n represent the number of
coefficients required to adequately describe the isotherms (m and n were gradually
increased until the contribution of extra added a and b coefficients was deemed to be
statistically in insignificant towards the overall fit, and the average value of the squared
deviations from the experimental values was minimized). The values of the virial
coefficients aop through am were then used to calculate the enthalpies heat of adsorption

using the following expression 2.

Qe=-R) aN (2
i=0

Qst is the coverage-dependent isosteric heat of adsorption and R is the universal gas
constant.
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Fig. S19 The CO> adsorption isotherms at 273 K (red) and 298 K (black) for 1 fitting
by virial method.
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Fig. S20 The CO; adsorption isotherms at 273 K (red) and 298 K (black) for 2 fitting
by virial method.
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Fig. S21 The CO- adsorption isotherms at 273 K (red) and 298 K (black) for 3 fitting
by virial method.
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