A Metal-Organic Framework Based on Cyclotriphosphazene Functionalized Hexacarboxylate for Selective Adsorption of CO_2 and C_2H_6 from CH_4 at Room Temperature

Yajing Ling,^a Chengling Song,^a Yunlong Feng,^a Mingxing Zhang,^b and Yabing He^{a*}

^{*a*} College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: heyabing@zjnu.cn

^b State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

Fig. S1 TGA curve of as-synthesized **ZJNU-60** and activated **ZJNU-60a** under a nitrogen atmosphere at a heating rate of 5 $^{\circ}$ C min⁻¹.

Fig. S2 N_2 adsorption-desorption isotherm of **ZJNU-60a** at 77 K. Solid and open symbols represent adsorption and desorption, respectively.

Fig. S3 PXRD patterns of as-synthesized **ZJNU-60** and activated **ZJNU-60a** together with the simulated one.

Fig. S4 CO₂ adsorption isotherms at 298 K of the samples activated at RT (black), 60 $^{\circ}$ C (red) and 100 $^{\circ}$ C (green), respectively. Solid and open symbols represent adsorption and desorption, respectively.

Fig. S5 Comparison of the pure-component isotherm data for (a) C_2H_6 , (b) CO_2 , and (c) CH_4 in **ZJNU-60a** with the fitted isotherms shown by continuous solid lines at 283 K, and 296 K.

Fig. S6 N_2 adsorption isotherms of ZJNU-60a at 283 K and 296 K, respectively.

Fig. S7 FTIR spectra of organic ligand (black) and the as-synthesized ZJNU-60 (red).

 180
 170
 160
 150
 140
 130
 120
 110
 100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

 ppm
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 <td

Fig. S8¹H NMR and ¹³C NMR spectra.

	Site A				Site B			
	$q_{ m A,sat}$ (mmol g ⁻¹)	b _{A0} (kPa ^{-vA})	$E_{\rm A}$ (kJ mol ⁻¹)	v _A	$q_{\mathrm{B,sat}}$ (mmol g^{-1})	b _{B0} (kPa ^{-νB})	$E_{\rm B}$ (kJ mol ⁻¹)	$v_{\rm B}$
C_2H_6	4.79	2.56×10 ⁻¹³	57.815	0.27	2.44	2.41×10 ⁻⁹	39.66	1.31
CO ₂	3.13	6.59×10 ⁻⁹	34.511	0.98	0.57	9.01×10 ⁻⁶	16.46	1.25
CH ₄	5.67	4.68×10 ⁻⁹	29.031	1	0.35	5.54×10 ⁻⁸	27.36	1.24

Table S1 Dual-site Langmuir-Freundlich fit parameters for **ZJNU-60a**.

Empirical formula	$C_{42}H_{30}Cu_3N_3O_{21}P_3$			
Formula weight	1196.25			
Temperature (K)	100 K			
Wavelength (Å)	1.54184			
Crystal system, space group	Triclinic, P-1			
	a = 12.6305(12) Å			
	b = 14.5753(7)Å			
Unit call dimensions	c = 22.114(3) Å			
Unit cen dimensions	$\alpha = 93.228(6)^{\circ}$			
	$\beta = 100.746(9)^{\circ}$			
	$\gamma = 98.776(6)^{\circ}$			
Volume (Å ³)	3937.7(7)			
Z, Calculated density (g cm ⁻³)	2, 1.009			
Absorption coefficient (mm ⁻¹)	1.967			
<i>F</i> (000)	1146			
Crystal size (mm)	$0.06 \times 0.04 \times 0.04$			
θ range for data collection (°)	3.08 to 74.73			
	-15≤ <i>h</i> ≤14,			
Limiting indices	-17≤ <i>k</i> ≤18,			
	-26≤ <i>l</i> ≤27			
Reflections collected / unique	$41838 / 15694 [R_{int} = 0.1860]$			
Completeness to $\theta = 27.56$	97.1 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	21.966 and 2.1075			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	15694 / 108 / 547			
Goodness-of-fit on F^2	1.106			
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.1921, wR_2 = 0.4431$			
R indices (all data)	$R_1 = 0.2527, wR_2 = 0.4910$			
Largest diff. peak and hole (e.Å ⁻³)	5.647 and -1.090			
CCDC	1060803			

Table S2 Crystal and structural refinement data for **ZJNU-60**