Electronic supplementary information (ESI) for

Hetero-epitaxial Growth of Stoichiometry Tunable $Si_{1-x}Ge_x$ film via a low temperature aluminum-induced solid phase epitaxy (AI-SPE) process

Chuan-Jung Lin,^a Sung-Yen Wei,^b Chien-Chung Hsu,^a Sheng-Min Yu,^{a,b} Wen-Ching Sun,^b Tzer-Shen Lin,^b and Fu-Rong Chen,^{a,*}

^aDepartment of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, R. O. C.

^bMaterial and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31040, Taiwan, R. O. C.

KEYWORDS: Aluminum-induced crystallization; Solid-phase epitaxy; SiGe; Heteroepitaxial; Low-temperature

Figure S1. The Ge fraction in $a-Si_{1-x}Ge_x$ layer measured by energy-dispersive X-ray spectroscopy (EDX). (a) $a-Si_{0.5}Ge_{0.5}$, and (b) $a-Si_{0.25}Ge_{0.75}$.

Figure S2. Raman spectra of the SiGe-50 and SiGe-75 samples annealed at 450° C in a

tube furnace for 10 hours under argon (Ar) atmosphere. The Raman peaks for SiGe-50 clearly located approximately at 288, 399, and 474 cm⁻¹, while the Raman peaks for SiGe-75 can clearly visible at 295, 406, and 482 cm⁻¹.

Figure S3. The SIMS depth profiles for SiGe-50 sample (a) before and (b) after annealing; (c) and (d) are the SIMS depth profiles for SiGe-75 sample before and after annealing.