Synthetic, Structural, and Luminescent Study of Uranyl Coordination Polymers Containing Chelating Terpyridine and Trispyridyltriazine Ligands

Sonia G. Thangavelu^a, Simon J. A. Pope^b, and Christopher L. Cahill^{a*}

^a Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, DC, 20052, USA

^b School of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales, UK, CF10 3AT

*Corresponding author. Phone: (202) 994-6959. Email: cahill@gwu.edu

Supporting Information

Table S1. Selected bond lengths (Å) and bond angles (°) for the uranyl centers in 1.

U(1)-O(2)	1.766(4)
U(1)-O(1)	1.773(4)
U(1)-O(4)	2.269(4)
U(1)-O(6)	2.276(4)
U(1)-N(1)	2.577(5)
U(1)-N(3)	2.582(5)
U(1)-N(2)	2.592(5)
O(2)-U(1)-O(1)	177.44(18)
O(2)-U(1)-O(4)	90.18(16)
O(1)-U(1)-O(4)	92.37(17)
O(2)-U(1)-O(6)	89.88(17)
O(1)-U(1)-O(6)	90.73(16)
O(4)-U(1)-O(6)	80.55(14)
O(2)-U(1)-N(1)	87.94(17)
O(1)-U(1)-N(1)	89.72(17)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O(4)-U(1)-N(1)	160.45(15)
O(2)-U(1)-N(3) $86.38(17)$ $O(1)-U(1)-N(3)$ $94.10(16)$ $O(4)-U(1)-N(3)$ $75.00(15)$ $O(6)-U(1)-N(3)$ $155.23(15)$ $N(1)-U(1)-N(3)$ $124.25(15)$ $O(2)-U(1)-N(2)$ $96.53(17)$ $O(1)-U(1)-N(2)$ $81.49(16)$ $O(4)-U(1)-N(2)$ $136.22(15)$ $O(6)-U(1)-N(2)$ $142.35(14)$ $N(1)-U(1)-N(2)$ $63.29(15)$	O(6)-U(1)-N(1)	79.99(15)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O(2)-U(1)-N(3)	86.38(17)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O(1)-U(1)-N(3)	94.10(16)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O(4)-U(1)-N(3)	75.00(15)
N(1)-U(1)-N(3)124.25(15) $O(2)-U(1)-N(2)$ 96.53(17) $O(1)-U(1)-N(2)$ 81.49(16) $O(4)-U(1)-N(2)$ 136.22(15) $O(6)-U(1)-N(2)$ 142.35(14) $N(1)-U(1)-N(2)$ 63.29(15)	O(6)-U(1)-N(3)	155.23(15)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N(1)-U(1)-N(3)	124.25(15)
O(1)-U(1)-N(2) 81.49(16) O(4)-U(1)-N(2) 136.22(15) O(6)-U(1)-N(2) 142.35(14) N(1)-U(1)-N(2) 63.29(15)	O(2)-U(1)-N(2)	96.53(17)
O(4)-U(1)-N(2) 136.22(15) O(6)-U(1)-N(2) 142.35(14) N(1)-U(1)-N(2) 63.29(15)	O(1)-U(1)-N(2)	81.49(16)
O(6)-U(1)-N(2) 142.35(14) N(1)-U(1)-N(2) 63.29(15) N(2)-U(1)-N(2) (2.4)(15)	O(4)-U(1)-N(2)	136.22(15)
N(1)-U(1)-N(2) 63.29(15)	O(6)-U(1)-N(2)	142.35(14)
N(2) U(1) N(2) (2.41(15)	N(1)-U(1)-N(2)	63.29(15)
N(3)-U(1)-N(2) 62.41(15)	N(3)-U(1)-N(2)	62.41(15)

Table S2. Selected bond lengths (Å) and bond angles (°) for the uranyl centers in 2.

1.7676(18)
1.7781(18)
2.2724(19)
2.2762(18)
2.576(2)
2.583(2)
2.592(2)
177.37(9)
89.86(8)
92.75(8)
90.74(8)
80.35(7)
87.79(8)

O(2)-U(1)-N(3)	89.84(8)
O(6)-U(1)-N(3)	160.26(7)
O(4)-U(1)-N(3)	80.05(7)
O(1)-U(1)-N(1)	86.70(8)
O(2)-U(1)-N(1)	93.71(8)
O(6)-U(1)-N(1)	75.11(7)
O(4)-U(1)-N(1)	155.23(7)
N(3)-U(1)-N(1)	124.26(7)
O(1)-U(1)-N(2)	96.54(8)
O(2)-U(1)-N(2)	81.37(7)
O(6)-U(1)-N(2)	136.59(7)
O(4)-U(1)-N(2)	142.20(7)
N(3)-U(1)-N(2)	63.14(7)
N(1)-U(1)-N(2)	62.54(7)

Table S3. Selected bond lengths (Å) and bond angles (°) for the uranyl centers in 3.

U(1)-O(2)	1.750(5)
U(1)-O(1)	1.760(6)
U(1)-O(4)	2.246(5)
U(1)-O(5)	2.313(5)
U(1)-N(6)	2.575(6)
U(1)-N(2)	2.585(5)
U(1)-N(1)	2.605(5)
O(2)-U(1)-O(1)	175.1(2)
O(2)-U(1)-O(4)	90.5(2)
O(1)-U(1)-O(4)	93.2(2)
O(2)-U(1)-O(5)	90.4(2)
O(1)-U(1)-O(5)	93.3(2)

O(4)-U(1)-O(5)	81.06(19)
O(2)-U(1)-N(6)	90.8(2)
O(1)-U(1)-N(6)	86.9(2)
O(4)-U(1)-N(6)	159.65(18)
O(5)-U(1)-N(6)	78.62(18)
O(2)-U(1)-N(2)	82.90(19)
O(1)-U(1)-N(2)	92.2(2)
O(4)-U(1)-N(2)	137.84(18)
O(5)-U(1)-N(2)	140.24(18)
N(6)-U(1)-N(2)	62.41(17)
O(2)-U(1)-N(1)	91.5(2)
O(1)-U(1)-N(1)	86.2(2)
O(4)-U(1)-N(1)	76.89(17)
O(5)-U(1)-N(1)	157.88(18)
N(6)-U(1)-N(1)	123.37(16)
N(2)-U(1)-N(1)	61.81(16)
· · · · · · · · · · · · · · · · · · ·	

Table S4. Selected bond lengths (Å) and bond angles (°) for the uranyl centers in 4.

U(1)-O(2)	1.753(4)
U(1)-O(1)	1.763(4)
U(1)-O(6)#1	2.257(4)
U(1)-O(3)	2.301(4)
U(1)-N(2)	2.569(4)
U(1)-N(1)	2.592(5)
U(1)-N(3)	2.606(5)
O(2)-U(1)-O(1)	176.97(18)
O(2)-U(1)-O(6)#1	91.47(18)
O(1)-U(1)-O(6)#1	89.20(16)

O(2)-U(1)-O(3)	89.32(17)
O(1)-U(1)-O(3)	93.70(16)
O(6)#1-U(1)-O(3)	82.09(14)
O(2)-U(1)-N(2)	81.98(16)
O(1)-U(1)-N(2)	95.59(16)
O(6)#1-U(1)-N(2)	138.98(15)
O(3)-U(1)-N(2)	137.82(14)
O(2)-U(1)-N(1)	94.82(17)
O(1)-U(1)-N(1)	85.59(16)
O(6)#1-U(1)-N(1)	158.68(15)
O(3)-U(1)-N(1)	77.64(14)
N(2)-U(1)-N(1)	62.24(14)
O(2)-U(1)-N(3)	91.21(17)
O(1)-U(1)-N(3)	86.04(16)
O(6)#1-U(1)-N(3)	78.04(14)
O(3)-U(1)-N(3)	160.13(14)
N(2)-U(1)-N(3)	61.77(14)
N(1)-U(1)-N(3)	122.07(14)

 Table S5.
 Selected bond lengths (Å) and bond angles (°) for the uranyl centers in 5.

U(1)-O(2)	1.750(6)
U(1)-O(1)	1.755(6)
U(1)-O(5)	2.245(6)
U(1)-O(3)	2.280(5)
U(1)-N(2)	2.597(6)
U(1)-N(1)	2.615(6)
U(1)-N(3)	2.637(7)
O(2)-U(1)-O(1)	176.0(3)

O(2)-U(1)-O(5)	93.9(3)
O(1)-U(1)-O(5)	89.6(3)
O(2)-U(1)-O(3)	91.4(2)
O(1)-U(1)-O(3)	91.0(2)
O(5)-U(1)-O(3)	81.9(2)
O(2)-U(1)-N(2)	91.4(2)
O(1)-U(1)-N(2)	84.7(2)
O(5)-U(1)-N(2)	138.1(2)
O(3)-U(1)-N(2)	139.6(2)
O(2)-U(1)-N(1)	84.3(2)
O(1)-U(1)-N(1)	94.6(2)
O(5)-U(1)-N(1)	77.6(2)
O(3)-U(1)-N(1)	158.6(2)
N(2)-U(1)-N(1)	61.59(19)
O(2)-U(1)-N(3)	90.8(2)
O(1)-U(1)-N(3)	86.5(3)
O(5)-U(1)-N(3)	159.5(2)
O(3)-U(1)-N(3)	78.1(2)
N(2)-U(1)-N(3)	61.56(19)
N(1)-U(1)-N(3)	122.75(19)

Table S6. Selected bond lengths (Å) and bond angles (°) for the uranyl centers in 6.

U(1)-O(1)	1.742(5)
U(1)-O(2)	1.747(5)
U(1)-O(4)	2.234(4)
U(1)-O(5)	2.308(5)
U(1)-N(2)	2.586(5)
U(1)-N(1)	2.600(5)

U(1)-N(3)	2.617(5)
O(1)-U(1)-O(2)	175.40(19)
O(1)-U(1)-O(4)	90.2(2)
O(2)-U(1)-O(4)	93.1(2)
O(1)-U(1)-O(5)	90.8(2)
O(2)-U(1)-O(5)	92.9(2)
O(4)-U(1)-O(5)	81.03(18)
O(1)-U(1)-N(2)	83.38(19)
O(2)-U(1)-N(2)	92.02(19)
O(4)-U(1)-N(2)	137.66(17)
O(5)-U(1)-N(2)	140.58(17)
O(1)-U(1)-N(1)	91.3(2)
O(2)-U(1)-N(1)	86.7(2)
O(4)-U(1)-N(1)	160.14(18)
O(5)-U(1)-N(1)	79.14(17)
N(2)-U(1)-N(1)	62.13(16)
O(1)-U(1)-N(3)	91.2(2)
O(2)-U(1)-N(3)	86.4(2)
O(4)-U(1)-N(3)	76.65(17)
O(5)-U(1)-N(3)	157.60(17)
N(2)-U(1)-N(3)	61.78(15)
N(1)-U(1)-N(3)	123.10(15)

 Table S7.
 Selected bond lengths (Å) and bond angles (°) for the uranyl centers in 7.

U(1)-O(2)	1.744(3)
U(1)-O(1)	1.756(3)
U(1)-O(3)	2.259(3)
U(1)-O(6)#1	2.278(3)

U(1)-N(2)	2.572(3)
U(1)-N(6)	2.596(4)
U(1)-N(1)	2.628(3)
O(1)-U(1)-O(2)	177.01(13)
O(2)-U(1)-O(3)	89.04(13)
O(1)-U(1)-O(3)	91.99(13)
O(2)-U(1)-O(6)#1	96.13(14)
O(1)-U(1)-O(6)#1	86.81(13)
O(3)-U(1)-O(6)#1	81.07(11)
O(2)-U(1)-N(2)	94.24(13)
O(1)-U(1)-N(2)	83.18(12)
O(3)-U(1)-N(1)	140.24(11)
O(6)#1-U(1)-N(2)	137.53(11)
O(2)-U(1)-N(6)	88.31(13)
O(1)-U(1)-N(6)	89.15(13)
O(3)-U(1)-N(6)	78.53(11)
O(6)#1-U(1)-N(6)	159.05(11)
N(2)-U(1)-N(6)	62.01(1)
O(2)-U(1)-N(1)	87.09(13)
O(1)-U(1)-N(1)	92.99(12)
O(3)-U(1)-N(1)	157.79(11)
O(6)#1-U(1)-N(1)	77.61(11)
N(2)-U(1)-N(1)	61.92(11)
N(6)-U(1)-N(1)	123.16(10)

Figure S1. The ORTEP diagram of **1** $[(UO_2)(BrC_8H_3O_4)(C_{15}H_{11}N_3)]$. Thermal ellipsoids are shown at 50% probability level. Hydrogens have been omitted.

Figure S2. The ORTEP diagram of **2** $[(UO_2)(ClC_8H_3O_4)(C_{15}H_{11}N_3)]$. Thermal ellipsoids are shown at 50% probability level. Hydrogens have been omitted.

Figure S3. The ORTEP diagram of **3** $[(UO_2)(BrC_8H_3O_4)(C_{18}H_{12}N_6)] \cdot H_2O$. Thermal ellipsoids are shown at 50% probability level. Hydrogens have been omitted.

Figure S4. The ORTEP diagram of **4** $[(UO_2)(ClC_8H_3O_4)(C_{18}H_{12}N_6)] \cdot 2H_2O$. Thermal ellipsoids are shown at 50% probability level. Hydrogens have been omitted.

Figure S5. The ORTEP diagram of **5** $[(UO_2)(C_8H_3IO_4)(C_{18}H_{12}N_6)] \cdot 2C_3H_7O$. Thermal ellipsoids are shown at 50% probability level. Hydrogens have been omitted.

Figure S6. The ORTEP diagram of **6** $[(UO_2)(C_9H_6O_4)(C_{18}H_{12}N_6)] \cdot H_2O$. Thermal ellipsoids are shown at 50% probability level. Hydrogens have been omitted.

Figure S7. The ORTEP diagram of 7 $[(UO_2)(C_6H_2O_4S)(C_{18}H_{12}N_6)] \cdot 2H_2O$. Thermal ellipsoids are shown at 50% probability level. Hydrogens have been omitted.

Figure S8. Observed and calculated powder X-ray diffraction pattern for 1.

Figure S9. Observed and calculated powder X-ray diffraction pattern for 2.

Figure S10. Observed and calculated powder X-ray diffraction pattern for 3.

Figure S11. Observed and calculated powder X-ray diffraction pattern for 4.

Figure S12. Observed and calculated powder X-ray diffraction pattern for 5.

Figure S13. Observed and calculated powder X-ray diffraction pattern for 6.

Figure S14. Observed and calculated powder X-ray diffraction pattern for 7.

Figure S15. The packing diagram of 1. Weak π - π interactions are observed between two Br-BDC rings and TPY ligands of adjacent dimers.

Figure S16. The crystal structure of 2.

Figure S17. The packing diagram of 2.

Figure S18. The packing diagram of **3**. The two π - π interactions are observed between two Br-BDC rings and between TPTZ ligands of adjacent dimers.

Figure S19. The crystal structure of 4.

Figure S20. The packing diagram of 4.

Figure S21. The packing diagram of **5**. The hydroxyl proton of 2-propanol participates in hydrogen bonding with the nitrogen atom in the pyrazyl ring of TPTZ. Black spheres represent carbon.

Figure S22. The packing diagram of 6. π - π interactions are observed between two Me-BDC rings and between TPTZ ligands of adjacent dimers.

Figure S23. The packing diagram of 7.

Figure S24. Solid-state emission spectra of 3-7 (excitation: 365 nm, 298 K).

Figure S25. Solid-state emission spectra of 1-4 (excitation: 365 nm, 298 K).

General Determination of Emission Shift. To determine the emission shifts of **1-4**, the peak positions of each spectrum were measured. The peak positions of **1** and **3** were superimposed to the emission peak positions of **2** and **4** respectively and then the energy difference between each peak was calculated. A summary of these results can be found in Tables S8 and S9.

Table S8. Summary of emission peak positions and shifts of 1 and 3 at 365 nm.

Compound	Position 1	Position 2	Position 3	Position 4	Average
	(cm ⁻¹)				
3	20364	19531	18692	17889	19119
1	20284	19455	18622	17794	19039
Energy shift	80	76	70	95	80

Compound	Position 1	Position 2	Position 3	Position 4	Average
	(cm ⁻¹)				
4	20325	19493	18692	17825	19084
2	20284	19417	18622	17794	19029
Energy shift	41	76	70	31	55

Table S9. Summary of emission peak positions and shifts of 2 and 4 at 365 nm.

Figure S26. A comparison of π -stacking distances of adjacent N-donor ligands in 1-4. A shift in emission seems to be influenced by the presence of π - π interactions between neighboring TPTZ ligands.

Compound	O/N Ligand	$\lambda em / cm^{-1}$	τ / μ s (365 nm exc)
1	Br-BDC/ TPY	20284, 19455, 18622,	49.89, 119.02 (84%)
		17794	
2	Cl-BDC/ TPY	20284, 19417, 18622,	35.40, 86.72 (77%)
		17794	
3	Br-BDC/ TPTZ	20364, 19531, 18692,	66.12, 111.89 (60%)
		17889	
4	Cl-BDC/ TPTZ	20325, 19493, 18692,	58.89, 108.44 (61%)
		17825	
5	I-BDC/ TPTZ	-	-
6	Me-BDC/ TPTZ	20325, 19493, 18692,	32.78 (74%), 72.54
		17857	
7	TDC/ TPTZ	20367, 19493, 18692,	35.16 (7%), 11.15 (66%),
		17794	3.87 (28%)
8	TDC/ TPY	20202, 19342, 18484,	35.69 (18%), 116.39 (79%),
		17637	7.45 (2%)
9	TDC/ Cl-TPY	20284, 19417, 18587,	41.75 (33%), 85.94 (54%),
		17762	1.58 (12%)

 Table S10.
 Spectroscopic data (fluorescence and lifetimes) for 1-9 at 365 nm (298 K).