Electronic Supplementary Information (ESI)

Three-dimensional two-fold interpenetrated Cr^{III}-Gd^{III} heterometallic framework as an attractive cryogenic magnetorefrigerant

Sui-Jun Liu,* Xin-Rong Xie, Teng-Fei Zheng, Jun Bao, Jin-Sheng Liao, Jing-Lin Chen, and He-Rui Wen*

School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China

*Corresponding author. E-mail: liusuijun147@163.com, wenherui63@163.com. Tel: +86-797-8312553.

Contents

- **Table S1.** Comparison of $-\Delta S_m^{\text{max}}$ (larger than 30.0 J kg⁻¹ K⁻¹ with $\Delta H = 7/9$ T) among 1 and 3*d*-Gd^{III} complexes associated with potential molecule-based magnetic coolers.
- Table S2. Selected bond lengths (Å) and angles (°) of 1.
- Fig. S1. Views of (a) the $\{Gd(ox)\}_{\infty}$ chain in 1; (b) the two interpenetrating 3D networks along *c* direction.
- Fig. S2. The IR spectrum of 1.
- Fig. S3. The XRPD patterns of 1.
- Fig. S4. The TGA curve for 1.
- Fig. S5. The ZFC/FC curves under 50 Oe field of 1.

Complex	Dimensionality	$\frac{-\Delta S_{\rm m}^{\rm max} \left[{\rm J \ kg^{-1} \ K^{-1}} \right]}{(\Delta H)}$	$-\Delta S_{\rm m}^{\rm max}$ [mJ cm ⁻³ K ⁻¹]
${[Mn(H_2O)_6][MnGd(oda)_3]_2} \cdot 6H_2O_n^{S2}$	3D	50.1 (7 T)	114.28
$[Co_{10}Gd_{42}]^{S3}$	0D	41.26 (7 T)	112.64
${[CrGd (IDA)_2(C_2O_4)]}_{\infty}$ (1)	3D	39.86 (7 T)	93.69
$[Cr_2Gd_3]^{S4}$	0D	38.3 (7 T)	57.79
$[Ni_{10}Gd_{42}]^{S3}$	0D	38.2 (7 T)	105.47
$[Gd_3Mn_2]_{\infty}^{S5}$	3D	40.3 (7 T)	92.32
$[Ni_{12}Gd_{36}]^{S6}$	0D	36.3 (7 T)	83.49
$[Cu_3Gd_6]_{\infty}{}^{S7}$	3D	35.76 (7 T)	
$[Cu_2Gd_7]^{S8}$	0D	34.6 (9 T)	63.70
$[Ni_2Gd_2(hmp)_4(OAc)_6]^{S9}$	0D	34.4 (7 T)	65.57
$[Mn_4Gd_6P_6]^{S10}$	0D	33.7 (7 T)	54.12
$[Fe_2Gd_3]^{S4}$	0D	33.1 (7 T)	50.71
$[Cu_4Gd_{12}]^{S8}$	0D	33.0 (9 T)	62.90
$[Co_4Gd_{10}]^{S9}$	0D	32.6 (7 T)	54.31
$[Cu_5Gd_4]^{S12}$	0D	31 (9 T)	61.66
$[ZnGd_5]_{\infty}^{S13}$	3D	30.7 (7 T)	57.96

Table S1 Comparison of $-\Delta S_m^{\text{max}}$ (larger than 30.0 J kg⁻¹ K⁻¹ with $\Delta H = 7/9$ T) among **1** and 3*d*-Gd^{III} complexes associated with potential molecule-based magnetic coolers.

 $-\Delta S_{m}^{max} [mJ \text{ cm}^{-3} \text{ K}^{-1}] = -\Delta S_{m}^{max} [J \text{ kg}^{-1} \text{ K}^{-1}] * \rho_{cald} [g \text{ cm}^{-3}]. \text{ odaH} = \text{oxydiacetate acid, H}_{2}IDA = \text{iminodiacetate acid, hmpH} = 2-(hydroxymethyl)pyridine}$

References

- S1. G. M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.
- S2. F.-S. Guo, Y.-C.Chen, J.-L. Liu, J.-D. Leng, Z.-S. Meng, P. Vrábel, M. Orendáč and M.-L.Tong, *Chem. Commun.*, 2012, 48, 12219.
- S3. J.-B. Peng, Q.-C. Zhang, X.-J. Kong, Y.-Z. Zheng, Y.-P. Ren, L.-S. Long, R.-B. Huang, L.-S. Zheng and Z. Zheng, J. Am. Chem. Soc., 2012, 134, 3314.

- S4. K. S. Pedersen, G. Lorusso, J. J. Morales, T. Weyhermüller, S. Piligkos, S. K. Singh, D. Larsen, M. Schau-Magnussen, G. Rajaraman, M. Evangelisti and J. Bendix, *Angew. Chem., Int. Ed.*, 2014, 53, 2394.
- S5. H.-C. Hu, X.-M. Kang, C.-S. Cao, P. Cheng and B. Zhao, Chem. Commun., 2015, 51, 10850.
- S6. J.-B. Peng, Q.-C. Zhang, X.-J. Kong, Y.-P. Ren, L.-S. Long, R.-B. Huang, L.-S. Zheng and Z. Zheng, Angew. Chem., Int. Ed., 2011, 50, 10649.
- S7. Y. Bing, N. Xu, W. Shi, K. Liu and P. Cheng, Chem. Asian J., 2013, 8, 1412.
- S8. S. K. Langley, B. Moubaraki, C. Tomasi, M. Evangelisti, E. K. Brechin and K. S. Murray, *Inorg. Chem.*, 2014, 53, 13154.
- S9. P. Wang, S. Shannigrahi, N. L. Yakovlev and T. S. A. Hor, Chem. Asian J., 2013, 8, 2943.
- S10. Y.-Z. Zheng, E. M. Pineda, M. Helliwell and R. E. P. Winpenny, Chem.-Eur. J., 2012, 18, 4161.
- S11. E. M. Pineda, F. Tuna, R. G. Pritchard, A. C. Regan, R. E. P. Winpenny and E. J. L. McInnes, *Chem. Commun.*, 2013, **49**, 3522.
- S12. S. K. Langley, N. F. Chilton, B. Moubaraki, T. Hooper, E. K. Brechin, M. Evangelisti and K. S. Murray, *Chem. Sci.*, 2011, **2**, 1166.
- S13. P.-F. Shi, Y.-Z. Zheng, X.-Q. Zhao, G. Xiong, B. Zhao, F.-F. Wan and P. Cheng, *Chem.-Eur. J.*, 2012, 18, 15086.

Table S2. Selected bond lengths (Å) and angles (°) for 1^a

N1—Cr1	2.054 (8)	O2—Gd1	2.364 (4)		
O1—Cr1	1.985 (4)	O4—Gd1	2.415 (4)		
O1 ^{#3} —Cr1—O1	88.0(3)	O1—Cr1—N1	82.7(2)		
O1 ^{#4} —Cr1—O1	92.0(3)	O1#5—Cr1—N1	97.3(2)		
O1—Cr1—N1 ^{#5}	97.3(2)	O2 ^{#6} —Gd1—O2 ^{#7}	99.0(3)		
O4 ^{#7} —Gd1—O4 ^{#6}	132.4(2)	O2#6—Gd1—O2	149.6(2)		
O4—Gd1—O4 ^{#6}	67.31(19)	O2 ^{#7} —Gd1—O2	88.9(3)		
O2—Gd1—O4 ^{#6}	138.73(14)	O2—Gd1—O4 ^{#7}	76.86(17)		
O2#7—Gd1—O4#6	77.90(16)	O2—Gd1—O4	71.66(14)		
O4 ^{#7} —Gd1—O4	135.4(2)				
^a Symmetry codes: #3: -x+2, -y+1, z; #4: -y+3/2, -x+3/2, -z+1/2; #5:					
-x+2, -y, z; #6: -x+2, -y, -z+1; #7: -y+3/2, -x+3/2, -z+1/2.					

Fig. S1. Views of (a) the $\{Gd(ox)\}_{\infty}$ chain in 1; (b) the two interpenetrating 3D networks along c direction.

Fig. S2. The IR spectrum of 1.

Fig. S3. The XRPD patterns of 1.

Fig. S4. The TGA curve for 1.

Fig. S5. The ZFC/FC curves under 50 Oe field of 1.