Gel-assisted Synthesis of Oleate-modified Fe₃O₄@Ag Composite Microspheres as Magnetic SERS Probe for Thiram Detection

Haihong Zheng,^a Bingfang Zou,^{*ab} Lin Chen,^a Yongqiang Wang,^{*a} Xiaoli Zhang^a and Shaomin Zhou^a

5

Supporting Information

Fig. S1 FTIR spectrum of polyacrylate modified Fe₃O₄ microspheres.

Fig. S2 XRD patterns of (a) Fe₃O₄ microspheres, (b) Fe₃O₄ microspheres with Ag seeds, and (c) Fe₃O₄@Ag composite microspheres.

15

Fig. S3 FTIR spectra of (a) Fe₃O₄@Ag composite microspheres and (b) sodium oleate.

5

10

Fig. S4 SERS spectra collected from five different spots by using Fe₃O₄@Ag composite microspheres as SERS substrate.

15