Supplementary Information

Propeller-shaped molecules with thiazole hub: structural landscape and hydrazone cap mediated tunable host behavior in 4-hydrazino-1,3thiazoles

Sarah Titus and Kumaran G. Sreejalekshmi*
Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala Post, Thiruvananthapuram - 695 547, India

Table of contents

Table S. Geometrical parameters of H -bonds and angles

Fig.S1. Optimized geometries of IPHAT 2 and BzHAT

Fig.S2. Distance between water molecules in IPHAT 1 and IPHAT 2

Fig.S3. Parallel water planes formed by IPHAT 1 and IPHAT 2

Fig.S4. N-rich cannel area enclosing water molecules

Fig.S5. ORTEP views of molecular structures of BzHAT.MeOH and BzHAT.EtOH

Table S. Geometrical parameters of H -bonds and angles ($\mathrm{D}=$ donor atom; $\mathrm{A}=$ acceptor atom) ${ }^{a}$

Compound	D-H..A	D-H/ Å	H \cdots A)/A	D...A/ Å	$\begin{aligned} & \text { D-H } \cdots A / \\ & \text { deg } \end{aligned}$
IPHAT 1	$\mathrm{N}(3)-\mathrm{H}(3) \ldots \mathrm{O}(1)$	1.002(10)	1.85(2)	2.625(4)	131(2)
	$\mathrm{N}(2)-\mathrm{H}(2) \ldots \mathrm{O}\left(1^{\prime}\right)$	1.003(10)	1.895(15)	2.869(4)	163(3)
	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right) \ldots \mathrm{N}(4) \# 1$	0.950(10)	2.01(2)	2.892(4)	154(4)
	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime \prime}\right) \ldots \mathrm{O}\left(1^{\prime}\right) \# 1$	0.954(10)	1.922(16)	2.864(4)	169(6)
IPHAT 2	$\mathrm{N}(1)-\mathrm{H}(1) \ldots \mathrm{O}(2)$ \#2	0.82(3)	2.06(3)	2.867(3)	166(3)
	$\mathrm{N}(3)-\mathrm{H}(3) \ldots \mathrm{O}(1)$	0.85(3)	1.91(3)	2.606(3)	139(2)
	$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(2)$	0.89(3)	1.963(3)	2.847(3)	171(3)
	$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~B}) \ldots \mathrm{N}(4)$	0.79(4)	2.10 (4)	2.882(3)	171(4)
BzHAT.MeOH	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}\left(1^{\prime}\right) \# 3$	0.86	1.95	2.811(2)	174
	$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A}) \ldots \mathrm{O}(1)$	0.86	2.09	2.7060(18)	128
	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{H}\left(1^{\prime}\right) \ldots \mathrm{O}(1)$	0.82	1.90	2.719(2)	176
BzHAT.EtOH	$\mathrm{O}(2)-\mathrm{H}(2) \ldots \mathrm{O}(1) \# 4$	0.82	1.99	2.739(2)	150
	$\mathrm{N}(1)-\mathrm{H}(1) \ldots \mathrm{O}(2) \# 5$	0.86	1.91	2.767(2)	178
	$N(3)-H(3) \ldots O(1)$	0.86	2.08	2.713(2)	129
CyHAT	$\mathrm{N}(12)-\mathrm{H}(12) \ldots \mathrm{N}(23)$)\#6	0.86	2.17	3.001	160
	$N(22)-H(22) \ldots \mathrm{N}(13) \# 7$	0.86	2.10	2.945	164
	$\mathrm{N}(14)-\mathrm{H}(14) \ldots \mathrm{O}(16)$	0.86	2.07	2.678	127

${ }^{a}$ Symmetry codes : (\#1) -x+1, y-1/2, -z+1/2; (\#2) $-x+1, y+1 / 2,-z+3 / 2 ;(\# 3)-x+3 / 2, y+1 / 2,-z+1 / 2 ;(\# 4)-x,-y,-z+1 ;(\# 5) x+1 / 2,-$ $y+1 / 2, z-1 / 2 ;(\# 6) x, y-1, z ;(\# 7) x, 1+y, z$.

Fig.S1 Optimized geometries of (i) IPHAT 2 and (ii) BzHAT. Electron density map is given. Calculations were done with 6-31G basis set, Gaussian 09 program.

Fig. S2 Distance between adjacent water molecules comparable to aquaporin in the 1D water chain of (i) IPHAT 1 and (ii) IPHAT 2. Molecules are viewed along a axis.

Fig. S3 View of superstructures formed by (i) IPHAT 1 and (ii) IPHAT 2 in the ac plane. Water molecules are in CPK representation. View of the two parallel water planes in the unit cell of (iii) IPHAT 1 and (iv) IPHAT 2 perpendicular to ac plane. Distances between the water planes are marked. Water molecules are shown in ball and stick representation.

Fig. S4 N-rich cannel area enclosing water molecules. Area of triangles was calculated using Heron's formula ${ }^{1}$ (
$\Delta=\sqrt{s(s-a)(s-b)(s-c)}$ where $\left.s=\frac{a+b+c}{2}\right)$

(i)

(ii)

Fig. S5 ORTEP views of molecular structures of (i) BzHAT-1.MeOH and (ii) BzHT-1.EtOH with 50% probability level.

References

1
Dunham, W., Journey through genius. ed.; Wiley: 1990.

