Crystal growth and characterization of solvated organic charge-transfer complexes built on TTF and 9-dicyanomethylenefluorene derivatives

Amparo Salmerón-Valverde, ${ }^{a}$ Sylvain Bernès ${ }^{b}$
${ }^{a}$ Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, 72570 Puebla, Mexico. E-mail: asv8085@yahoo.com.mx
${ }^{b}$ Instituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Mexico. E-mail: sylvain_bernes@hotmail.com

Electronic Supplementary Information (ESI)

		Page
Fig. S1 FTIR spectrum of acceptor DDF		3
Fig. S2 FTIR spectra of DDF ${ }^{-}$salts. (a) $\mathrm{M}^{+}=\mathrm{Li}^{+}$, (b)		3
Fig. S3 FTIR spectrum of acceptor DTF		4
Fig. S4 FTIR spectra of DTF^{-}salts. (a) $\mathrm{M}^{+}=\mathrm{Li}^{+}$, (b) $\mathrm{M}^{+}=\mathrm{Na}^{+}$		4
Fig. S5 FTIR spectrum of acceptor DC2TF		5
Fig. S6 FTIR spectra of DC2TF ${ }^{-}$salts. (a) $\mathrm{M}^{+}=\mathrm{Li}^{+}$, (b) $\mathrm{M}^{+}=\mathrm{Na}^{+}$, (c) $\mathrm{M}^{+}=\mathrm{K}^{+}$		5
Fig. S7 FTIR of compound 1, just after crystallization		6
Fig. S8 FTIR of compound 1, three months after crystallization		6
Fig. S9 FTIR of compound 2, just after crystallization		7
Fig. S10FTIR of compound 2, seven months after crystallization		7
Fig. S11FTIR of compound 3, just after crystallization		8
Fig. S12FTIR of compound 3, one year after crystallization		8
Fig. S13FTIR of compound 4, just after crystallization		9
Fig. S14FTIR of compound 4, ten months after crystallization		9
Fig. S15FTIR of compound 5		10
Fig. S16FTIR of compound 6		10
Table S17	Crystal data and structure refinement for complex 1	11
Table S18	Hydrogen bonds for 1 [A and ${ }^{\circ}$]	11
Fig. S19	ORTEP view of complex 1 (asymmetric unit; 30\% probability level) and checkCIF/PLATON report (Alert level G omitted)	12
Table S20	Crystal data and structure refinement for complex 2	13
Table S21		13
Fig. S22	ORTEP view of complex 2 (asymmetric unit; 30\% probability level) and checkCIF/PLATON report (Alert level G omitted)	14

Table S23 Crystal data and structure refinement for complex 3 15
Table S24 Hydrogen bonds for 3 [Å and ${ }^{\circ}$] 15
Fig. S25 $\quad \begin{array}{lll}\text { ORTEP view of complex } 3 \text { (asymmetric unit; 20\% probability level) and } \\ \text { checkCIF/PLATON report (Alert level G omitted) }\end{array}$

Table S26 Crystal data and structure refinement for complex $4 \quad 17$
Table S27 Hydrogen bonds for 4 [\AA and ${ }^{\circ}$] 17
$\begin{array}{lll}\text { Fig. } \mathbf{S 2 8} & \begin{array}{l}\text { ORTEP view of complex } 4 \text { (asymmetric unit; 20\% probability level) and } \\ \text { checkCIF/PLATON report (Alert level G omitted) }\end{array} & 18\end{array}$

Table S29 Crystal data and structure refinement for complex $5 \quad 19$
Table S30 Hydrogen bonds for 5 [\AA and ${ }^{\circ}$] 19
Fig. S31 ORTEP view of complex 5 (30% probability level) and checkCIF/
PLATON report (Alert level G omitted). Unlabelled atoms are generated by symmetry operators 1-x, y, 3/2-z (DC2TF molecule) and 1-x, 1-y, 1-z (TTF molecule)

Table S32 Crystal data and structure refinement for complex $6 \quad 21$
Table S33 Hydrogen bonds for 6 [\AA and ${ }^{\circ}$] 21
Fig. S34 ORTEP view of complex 6 (30% probability level) and checkCIF/ PLATON report (Alert level G omitted). Unlabelled atoms in one TTF molecule are generated by symmetry operator $-x,-y, 2-z$

Fig. S1 FTIR spectrum of acceptor DDF

Fig. $\mathbf{S 2}$ FTIR spectra of DDF^{-}salts. (a) $\mathrm{M}^{+}=\mathrm{Li}^{+}$, (b) $\mathrm{M}^{+}=\mathrm{Na}^{+}$

Fig. S3 FTIR spectrum of acceptor DTF

Fig. S4 FTIR spectra of DTF^{-}salts. (a) $\mathrm{M}^{+}=\mathrm{Li}^{+}$, (b) $\mathrm{M}^{+}=\mathrm{Na}^{+}$

Fig. S5 FTIR spectrum of acceptor DC2TF

Fig. S6 FTIR spectra of DC2TF ${ }^{-}$salts. (a) $\mathrm{M}^{+}=\mathrm{Li}^{+}$, (b) $\mathrm{M}^{+}=\mathrm{Na}^{+}$, (c) $\mathrm{M}^{+}=\mathrm{K}^{+}$

Fig. S7 FTIR of compound 1, just after crystallization

Fig. S8 FTIR of compound 1, three months after crystallization

Fig. S9 FTIR of compound 2, just after crystallization

Fig. S10 FTIR of compound 2, seven months after crystallization

Fig. S11 FTIR of compound 3, just after crystallization

Fig. S12 FTIR of compound 3, one year after crystallization

Fig. S13 FTIR of compound 4, just after crystallization

Fig. S14 FTIR of compound 4, ten months after crystallization

Fig. S15 FTIR of compound 5

Fig. S16 FTIR of compound 6

Table S17. Crystal data and structure refinement for complex 1

Identification code	(TTF-DDF). $\mathrm{CH}_{3} \mathrm{CN}$
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{4}$
Formula weight	563.63
Temperature	298(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$
Unit cell dimensions	$a=7.141(2) \AA \quad \alpha=90^{\circ}$.
	$b=17.151(4) \AA$ A $\quad \beta=99.18(3)^{\circ}$.
	$c=20.891(5) \AA$ A $\quad \gamma=90^{\circ}$.
Volume	2525.6(12) ${ }^{3}$
Z	4
Density (calculated)	$1.482 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.418 \mathrm{~mm}^{-1}$
F(000)	1152
Crystal size	$0.60 \times 0.14 \times 0.10 \mathrm{~mm}^{3}$
θ range for data collection	1.544 to 23.999°.
Index ranges	$-8<=h<=2,-1<=k<=19,-23<=1<=23$
Reflections collected	5355
Independent reflections	$3950\left[R_{\text {int }}=0.0658\right]$
Completeness to $\theta=23.999^{\circ}$	99.8 \%
Absorption correction	ψ-scans (0.378-0.516)
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3950 / 0 / 336
Goodness-of-fit on F^{2}	1.096
Final R indices [$/>2 \sigma(I)$]	$R_{1}=0.0664, w R_{2}=0.1564$
R indices (all data)	$R_{1}=0.1038, w R_{2}=0.1773$
Extinction coefficient	0.0005(3)
Largest diff. peak and hole	0.450 and -0.364 e. \AA^{-3}

Table S18. Hydrogen bonds for $\mathbf{1}\left[\AA\right.$ and ${ }^{\circ}$]

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$C(1)-H(1 A) \ldots N(12)$	0.93	2.56	$3.361(8)$	144.0
$C(6)-H(6 A) \ldots O(20) \# 1$	0.93	2.58	$3.373(7)$	143.7
$\mathrm{C}(8)-\mathrm{H}(8 A) \ldots \mathrm{N}(14)$	0.93	2.61	$3.405(8)$	144.1

Symmetry transformations used to generate equivalent atoms:
\#1 -x+1,--y,-z+1

Refinement for this complex was standard and carried out without restrictions nor constrictions. All H atoms were included in calculated positions and refined as riding to their carrier C atoms.

Fig. S19 ORTEP view of complex 1 (asymmetric unit; 30\% probability level) and checkCIF/PLATON report (Alert level G omitted)

Table S20. Crystal data and structure refinement for complex 2

Identification code	(TTF-DDF).0.5PhCI
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{12.50} \mathrm{Cl}_{0.50} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{4}$
Formula weight	578.85
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	$P-1$
Unit cell dimensions	$a=7.3769(11) \AA$ A $\quad \alpha=81.218(7)^{\circ}$.
	$b=9.3811(9) \AA$ A $\quad \beta=88.805(10)^{\circ}$.
	$c=18.9293(19) \AA$ 成 $\quad \gamma=75.958(10)^{\circ}$.
Volume	1255.8(3) \AA^{3}
Z	2
Density (calculated)	$1.531 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.473 \mathrm{~mm}^{-1}$
F(000)	590
Crystal size	$0.44 \times 0.18 \times 0.10 \mathrm{~mm}^{3}$
θ range for data collection	2.178 to 24.991°.
Index ranges	$-8<=h<=3,-11<=k<=10,-22<=l<=22$
Reflections collected	6313
Independent reflections	$4400\left[R_{\text {int }}=0.0244\right]$
Completeness to $\theta=24.991^{\circ}$	99.7 \%
Absorption correction	ψ-scans (0.316-0.350)
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4400 / 86-370
Goodness-of-fit on F^{2}	1.014
Final R indices [$/>2 \sigma(I)$]	$R_{1}=0.0408, w R_{2}=0.0921$
R indices (all data)	$R_{1}=0.0762, w R_{2}=0.1098$
Extinction coefficient	n / a
Largest diff. peak and hole	0.178 and -0.301 e. A $^{-3}$

Table S21. Hydrogen bonds for $2\left[\AA{ }^{\circ}\right.$ and ${ }^{\circ}$]

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$C(1)-H(1 A) \ldots N(12)$	0.93	2.63	$3.427(4)$	144.5
$C(8)-H(8 A) \ldots N(14)$	0.93	2.65	$3.451(4)$	144.6
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A}) \ldots \mathrm{O}(19) \# 20.93$	2.48	$3.098(4)$	124.5	
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A}) \ldots \mathrm{O}(19) \# 20.93$	2.65	$3.181(4)$	117.0	
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A}) \ldots \mathrm{O}(16) \# 30.93$	2.59	$3.189(15)$	123.0	

Symmetry transformations used to generate equivalent atoms:
\#1-x+1,-y+1,-z+1 \#2-x,-y,-z \#3 $x, y+1, z$

The chlorobenzene molecule is placed close to an inversion centre, and was refined with a s.o.f. constrained to $1 / 2$. The geometry and thermal behaviour for this molecule were restrained: all C-C bond lengths were restrained to 1.39(1) \AA and the six-membered ring was restrained to be flat (standard FLAT command in SHELXL). Chlorobenzene C atoms (C31...C36) were also constrained to approximate an isotropic shape and to have similar ADP's (standard ISOR and SIMU commands in SHELXL). All H atoms were included in calculated positions and refined as riding to their carrier C atoms.

Fig. S22 ORTEP view of complex 2 (asymmetric unit; 30\% probability level) and checkCIF/PLATON report (Alert level G omitted)

Table S23. Crystal data and structure refinement for complex 3

Identification code	(TTF-DTF). $\mathrm{CH}_{3} \mathrm{CN}$
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{4}$
Formula weight	608.64
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a=7.1635(16) \AA$ A $\quad \alpha=90^{\circ}$.
	$b=19.881(4) \AA \quad \beta=90^{\circ}$.
	$c=37.705(8) \AA \quad \gamma=90^{\circ}$.
Volume	5370(2) \AA^{3}
Z	8
Density (calculated)	$1.506 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.406 \mathrm{~mm}^{-1}$
F(000)	2480
Crystal size	$0.40 \times 0.40 \times 0.10 \mathrm{~mm}^{3}$
θ range for data collection	2.049 to 25.003°.
Index ranges	$-8<=h<=1,-23<=k<=1,-1<=\mid<=44$
Reflections collected	6049
Independent reflections	$4730\left[R_{\text {int }}=0.0273\right]$
Completeness to $\theta=25.003^{\circ}$	100.0 \%
Absorption correction	ψ-scans (0.200-0.240)
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4730 / 111 / 417
Goodness-of-fit on F^{2}	1.029
Final R indices [$/>2 \sigma(1)]$	$R_{1}=0.0570, w R_{2}=0.1404$
R indices (all data)	$R_{1}=0.1039, w R_{2}=0.1647$
Extinction coefficient	n / a
Largest diff. peak and hole	0.361 and -0.324 e. A $^{-3}$

Table S24. Hydrogen bonds for $\mathbf{3}\left[\AA{ }^{\circ}\right.$ and ${ }^{\circ}$]

D-H...A	$d(D-H)$	$d(H . . . A)$	$d(D . . . A)$	$<(D H A)$	
$C(1)-H(1 A) \ldots N(12)$	0.93	2.59	$3.404(6) 146.2$		
$C(4)-H(4 A) \ldots O(20 B)$	0.93	2.09	$2.795(8) 131.1$		
$C(5)-H(5 A) \ldots N(18 A)$	0.93	2.61	$3.159(14)$	118.3	
$C(5)-H(5 A) \ldots O(20 A)$	0.93	1.98	$2.68(2) 131.6$		
$C(8)-H(8 A) \ldots N(14)$	0.93	2.59	$3.405(5) 146.4$		
$C(31)-H(31 A) \ldots O(16) \# 1$	0.93	2.63	$3.468(6) 150.8$		
$C(32)-H(32 A) \ldots O(19 A) \# 2$	0.93	2.41	$3.309(18)$	161.1	
$C(32)-H(32 A) \ldots O(20 A) \# 2$	0.93	2.50	$3.225(13)$	134.6	
$C(34 A)-H(34 A) \ldots S(30) \# 3$	0.96	2.86	$3.62(2) 136.9$		
$C(34 B)-H(34 F) \ldots N(36 B) \# 1$	0.96	2.59	$3.46(3)$	150.2	

Symmetry transformations used to generate equivalent atoms:
$\# 1 x-1 / 2, y,-z+1 / 2 \quad \# 2-x+1 / 2, y-1 / 2, z \quad \# 3 x+1 / 2, y,-z+1 / 2$

In the acceptor molecule, nitro group bonded to C 4 is disordered over two positions, N18A/O19A/O20A [sof $=0.317(6)$] and N18B/O19B/O20B [sof $=1-0.317(6)=0.683(6)$], emulating C_{2} local symmetry for this molecule. The geometry of these nitro groups was restrained, with C4-N18A and C5-N18B bond lengths restrained to 1.49 (2) A , and N-O bond lengths restrained to 1.21(2) Å.

Acetonitrile is disordered over a number of positions, and was modelled using two sites, C34A/C35A/N36A [sof $=0.248(8)$] and C34B/C35B/N36B [sof $=1-0.248(8)=0.752(8)$]. The geometry was restrained in order to target sensible bond lengths and angles in both sites: $C 34 A-C 35 A=1.44(1) \AA, C 35 A-N 36 A=1.14(1) \AA, C 34 A . . N 36 A=2.58(1) \AA$, and similar restraints for B site. All C,N atoms for acetonitrile were restrained to approximate isotropic displacement parameters and to have similar U_{ij} values (standard ISOR and SIMU commands in SHELXL). All H atoms were included in calculated positions and refined as riding to their carrier C atoms.

Fig. S25 ORTEP view of complex 3 (asymmetric unit; 20\% probability level) and checkCIF/PLATON report (Alert level G omitted)

Table S26. Crystal data and structure refinement for complex 4

Identification code	(TTF-DTF).0.5Me ${ }_{2} \mathrm{CO}$
Empirical formula	$\mathrm{C}_{23.50} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{6.50} \mathrm{~S}_{4}$
Formula weight	596.62
Temperature	298(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a=7.1682(15) \AA$ A $\quad \alpha=90^{\circ}$.
	$b=19.902(6) \AA \quad \beta=90^{\circ}$.
	$c=37.805(9) \AA$ A $\quad \gamma=90^{\circ}$.
Volume	5393(2) \AA^{3}
Z	8
Density (calculated)	$1.470 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.403 \mathrm{~mm}^{-1}$
F(000)	2432
Crystal size	$0.60 \times 0.16 \times 0.08 \mathrm{~mm}^{3}$
θ range for data collection	2.047 to 22.534°.
Index ranges	$-7<=h<=7,-21<=k<=21,-40<=1<=40$
Reflections collected	8389
Independent reflections	3545 [$\left.R_{\text {int }}=0.1049\right]$
Completeness to $\theta=22.534^{\circ}$	99.9 \%
Absorption correction	ψ-scans (0.213-0.245)
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3545 / 53 / 399
Goodness-of-fit on F^{2}	1.092
Final R indices [$1>2 \sigma(1)$]	$R_{1}=0.0621, w R_{2}=0.1472$
R indices (all data)	$R_{1}=0.1109, w R_{2}=0.1848$
Extinction coefficient	0.00053(17)
Largest diff. peak and hole	0.409 and -0.284 e.Å ${ }^{-3}$

Table S27. Hydrogen bonds for 4 [\AA and ${ }^{\circ}$]

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	d(H...A)	d(D...A)	<(DHA)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{N}(12)$	0.93	2.59	3.410(8)	146.9
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A}) \ldots \mathrm{O}(20 B)$	0.93	1.95	2.667(13)	132.5
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A}) \ldots \mathrm{N}(18 \mathrm{~A})$	0.93	2.63	3.182(16)	118.6
C(5)-H(5A)...O(20A)	0.93	2.00	2.72(3)	132.8
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A}) \ldots \mathrm{N}(14)$	0.93	2.63	3.442(8)	146.2
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A}) \ldots \mathrm{O}(23) \# 1$	0.93	2.63	3.268(8)	126.2
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A}) \ldots \mathrm{O}(16) \# 2$	0.93	2.65	3.489(9)	150.8
C(32)-H(32A)...O(19A)\#3	0.93	2.33	3.25(2)	169.2
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A}) \ldots \mathrm{O}(20 \mathrm{~A}) \# 3$	0.93	2.52	3.241(18)	134.5
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A}) \ldots . \mathrm{O}(35) \# 4$	0.96	2.52	2.99(6)	110.4
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B}) \ldots \mathrm{O}(16) \# 5$	0.96	2.11	3.00(4)	152.5

Symmetry transformations used to generate equivalent atoms:
\#1 -x,-y+1,-z+1 \#2 x-1/2,y,-z+1/2 \#3-x+1/2,y-1/2,z
$\# 4 x+1 / 2, y,-z+1 / 2 \quad \# 5-x+3 / 2, y+1 / 2, z$

In the acceptor molecule, nitro group bonded to C 4 is disordered over two positions, N18A/O19A/O20A [sof = 0.365(10)] and N18B/O19B/O20B [sof = $1-0.365(10)=0.635(10)$], emulating the C_{2} local symmetry for this molecule. The geometry of these nitro groups was restrained as in isomorphous complex 3.
Acetone is strongly disordered and was modelled with a single position with fully restrained geometry: C34-C36 and C34-C37 bond lengths were restrained to 1.46(1) A, and C36...C37 separation to $2.51(2) \AA$. Carbonyl bond length was restrained to $\mathrm{C} 34-\mathrm{O} 35=1.20(1) \AA$ and the whole molecule was restrained to be flat (standard FLAT command in SHELXL). Finally, ADP's for acetone were restrained to be similar and approximate an isotropic behaviour (standard SIMU and ISOR commands in SHELXL). All H atoms were included in calculated positions and refined as riding to their carrier C atoms.

4 Alert level A
THETM01_ALERT_3_A The value of sine (theta_max)/wavelength is less than 0.550 Calculated $\sin ($ theta_max)/wavelength $=0.5392$

Author Response: Poor diffraction, probably related to solvent loss Poor diffraction, probably related to solvent loss

Fig. S28 ORTEP view of complex 4 (asymmetric unit; 20\% probability level) and checkCIF/PLATON report (Alert level G omitted)

Table S29. Crystal data and structure refinement for complex 5

Identification code	(TTF-DC2TF). $\mathrm{H}_{2} \mathrm{O}$
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}, \mathrm{S}_{4}$
Formula weight	629.61
Temperature	$298(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Monoclinic
Space group	$C 2 / c$
Unit cell dimensions	$a=15.9432(14) \AA \quad \alpha=90^{\circ}$.
	$b=12.1351(9) \AA \quad \beta=104.572(7)^{\circ}$.
	$c=13.5738(11) \AA \quad \gamma=90^{\circ}$.
Volume	$2541.7(4) \AA^{\AA}$
Z	4
Density (calculated)	$1.645 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.439 \mathrm{~mm}^{-1}$
$F(000)$	1280
Crystal size	$0.60 \times 0.34 \times 0.20 \mathrm{~mm}{ }^{3}$
θ range for data collection	2.135 to 27.499°.
Index ranges	$-20<=h<=13,-15<=k<=15,-17<=/<=17$
Reflections collected	6560
Independent reflections	$2918\left[R_{\text {int }}=0.0256\right]$
Completeness to $\theta=25.242^{\circ}$	99.9%
Absorption correction	$\psi-s c a n s(0.286-0.336)$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints $/$ parameters	$2918 / 14 / 227$
Goodness-of-fit on F^{2}	1.064
Final R indices [/>2 $\sigma(I)]$	$R_{1}=0.0547, w R_{2}=0.1448$
R indices (all data)	$R_{1}=0.0647, w R_{2}=0.1511$
Extinction coefficient	n / a
Largest diff. peak and hole	0.912 and -0.390 e. \AA^{-3}

Table S30. Hydrogen bonds for 5 [\AA and ${ }^{\circ}$]

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D . . . A)$	$<(D H A)$
$\mathrm{O}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~A}) \ldots \mathrm{O}(22)$	$0.88(2)$	$2.41(6)$	$3.03(2)$	$128(6)$
$\mathrm{O}(22)-\mathrm{H}(22 \mathrm{~A}) \ldots \mathrm{O}(15) \# 3$	$0.85(2)$	$2.18(6)$	$2.944(6)$	$150(11)$
$\mathrm{O}(22)-\mathrm{H}(22 \mathrm{~A}) \ldots \mathrm{O}(22) \# 4$	$0.85(2)$	$2.41(10)$	$2.869(14)$	$115(9)$
$\mathrm{O}(22)-\mathrm{H}(22 \mathrm{~B}) \ldots \mathrm{O}(12 \mathrm{~A}) \# 4$	$0.85(2)$	$1.85(3)$	$2.697(19)$	$173(11)$
$\mathrm{O}(22)-\mathrm{H}(22 \mathrm{~B}) \ldots \mathrm{O}(12 \mathrm{~B}) \# 4$	$0.85(2)$	$1.85(4)$	$2.682(11)$	$167(12)$

Symmetry transformations used to generate equivalent atoms:
\#1-x+1,y,-z+3/2 \#2-x+1,-y+1,-z+1 \#3-x+3/2,y-1/2,-z+3/2
\# $4-x+2,-y+1,-z+2$

The acceptor molecule is placed on the twofold crystallographic axis in $C 2 / c$ space group and has then substituents bonded at C2 and C2' disordered (carboxylic group C11A/O12A/O13A/H13A and nitro group $\mathrm{N} 11 \mathrm{~B} / \mathrm{O} 12 \mathrm{~B} / \mathrm{O} 13 \mathrm{~B}$, both with sof's constrained by symmetry to $1 / 2$). The carboxylic group was restrained to a sensible geometry: $C 2-C 11 A=1.49(2) \AA, C 11 A-012 A=1.22(2) \AA$, $\mathrm{C} 11 \mathrm{~A}-\mathrm{O} 13 \mathrm{~A}=1.30(4) \AA, \mathrm{O} 12 \mathrm{~A} . . \mathrm{O} 13 \mathrm{~A}=2.22(4) \AA, \mathrm{O} 13 \mathrm{~A}-\mathrm{H} 13 \mathrm{~A}=0.88(2) \AA$ and $012 \mathrm{~A} . . \mathrm{H} 13 \mathrm{~A}=$ $2.35(4) \AA$. The carboxylic acid group was restrained to be flat (standard FLAT command in SHELXL). The geometry of the disordered nitro group was also restrained: $\mathrm{C} 2-\mathrm{N} 11 \mathrm{~B}=1.47(2) \AA, \mathrm{N}-\mathrm{O}$ bond lengths $=1.21(2) \AA$, and $\mathrm{O} 12 \mathrm{~B} . . . \mathrm{O} 13 \mathrm{~B}=2.15(4) \AA$. The TTF molecule is placed across an inversion centre and was refined freely. For the DA complex, C-bonded H atoms were included in calculated positions and refined as riding to their carrier C atoms. The hydroxyl H atom H 13 A was first located in a difference map, and its position geometrically restrained as described above. The water molecule O 22 is placed close to an inversion centre, and was refined with sof constrained to $1 / 2 . \mathrm{H}$ atoms H22A and H22B were first found in a difference map, and the geometry of the water molecule was eventually restrained with $\mathrm{O}-\mathrm{H}$ bond lengths $=0.85(2) \AA$ and $\mathrm{H} . . . \mathrm{H}$ separation $=$ 1.35(4) Å. C-bonded H atoms were included in calculated positions and refined as riding to their carrier atoms.

Alert level B
PLAT782 ALERT 2 B Unusual Bond Geometry for C-NO2 Moiety Around N14 Check

Fig. S31 ORTEP view of complex 5 (30% probability level) and checkCIF/PLATON report (Alert level G omitted). Unlabelled atoms are generated by symmetry operators 1-x, y, 3/2-z (DC_{2} TF molecule) and 1-x, 1-y, 1-z (TTF molecule).

Table S32. Crystal data and structure refinement for complex 6

Identification code	$(\mathrm{TTF})_{3}(\mathrm{DC2TF})_{2} .2 \mathrm{CH}_{3} \mathrm{CN}$
Empirical formula	$\mathrm{C}_{56} \mathrm{H}_{28} \mathrm{~N}_{12} \mathrm{O}_{16} \mathrm{~S}_{12}$
Formula weight	1509.62
Temperature	298(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	$P-1$
Unit cell dimensions	$a=10.0608(10) \AA \quad \alpha=107.535(8){ }^{\circ}$.
	$b=10.3528(11) \AA \quad \beta=100.525(9)^{\circ}$.
	$c=15.612(2) \AA \quad \gamma=90.877(8)^{\circ}$.
Volume	1520.2(3) \AA^{3}
Z	1
Density (calculated)	$1.649 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.513 \mathrm{~mm}^{-1}$
F(000)	768
Crystal size	$0.40 \times 0.40 \times 0.24 \mathrm{~mm}^{3}$
θ range for data collection	2.065 to 25.000°.
Index ranges	$-11<=h<=1,-11<=k<=11,-18<=\mid<=18$
Reflections collected	6125
Independent reflections	$5172\left[R_{\text {int }}=0.0467\right]$
Completeness to $\theta=25.000^{\circ}$	96.9 \%
Absorption correction	ψ-scans (0.349-0.393)
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5172 / 1 / 437
Goodness-of-fit on F^{2}	1.059
Final R indices [/>2 $/(1)$]	$R_{1}=0.0569, w R_{2}=0.1385$
R indices (all data)	$R_{1}=0.0862, w R_{2}=0.1567$
Extinction coefficient	n / a
Largest diff. peak and hole	0.413 and -0.354 e..$^{-3}$

Table S33. Hydrogen bonds for $6\left[\AA\right.$ and ${ }^{\circ}$]

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$C(6)-H(6 A) \ldots S(33) \# 2$	0.93	2.99	$3.908(4)$	169.5
$C(8)-H(8 A) \ldots N(14)$	0.93	2.58	$3.364(6)$	142.6
$\mathrm{O}(16)-\mathrm{H}(16) \ldots \mathrm{O}(17) \# 3$	$0.951(10)$	$1.748(13)$	$2.697(4)$	$175(6)$
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A}) \ldots \mathrm{O}(25) \# 4$	0.93	2.60	$3.274(6)$	130.0
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A}) \ldots \mathrm{N}(44) \# 5$	0.93	2.51	$3.239(8)$	135.5
$\mathrm{C}(35)-\mathrm{H}(35 \mathrm{~A}) \ldots \mathrm{N}(14) \# 6$	0.93	2.59	$3.470(6)$	157.4
$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A}) \ldots \mathrm{N}(12) \# 2$	0.93	2.46	$3.343(7)$	159.1
$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B}) \ldots \mathrm{O}(22) \# 7$	0.96	2.66	$3.452(9)$	140.2

Symmetry transformations used to generate equivalent atoms:
\#1-x,-y,-z+2 \#2 $x+1, y, z \quad \# 3-x-1,-y+1,-z+2$
\#4 -x,-y-1,-z+1 \#5-x,-y+1,-z+2 \#6 $x, y+1, z \quad \# 7-x+1,-y+1,-z+2$

Refinement for this complex was standard and carried out without restrictions nor constrictions. All H atoms were included in calculated positions and refined as riding to their carrier C atoms.

Alert level		
PLAT029 ALERT 3 C	diffrn_measured_fraction_theta_full Low	0.969 Note
PLAT244 ALERT 4 C	Low 'Solvent' Ueq as Compared to Neighbors of	C43 Check
PLAT340 ALERT 3 C	Low Bond Precision on C-C Bonds	0.0066 Ang.
PLAT480 ALERT 4 C	Long H...A H-Bond Reported H6A .. S33	2.99 Ang.
PLAT480 ALERT 4 C	Long H...A H-Bond Reported H42B .. 022	2.66 Ang.
PLAT906 ALERT 3 C	Large K value in the Analysis of Variance	3.274 Check
PLAT911 ALERT 3 C	Missing \# FCF Refl Between THmin \& STh/L= 0.595	133 Report

Fig. S34 ORTEP view of complex 6 (30% probability level) and checkCIF/PLATON report (Alert level G omitted). Unlabelled atoms in one TTF molecule are generated by symmetry operator $-x,-y, 2-z$

