Supporting Informations for

Crystallization of Triple- and Quadruple-Stranded Dinuclear Bis- β-diketonate-Dy(III)
 Helicates: Single Molecule Magnet Behavior
 Peng Chen, ${ }^{a}$ Hongfeng Li, ${ }^{a}$ Wenbin Sun, ${ }^{a}$ Jinkui Tang, ${ }^{* b}$ Lei Zhang ${ }^{a}$ and Pengfei Yan*a

a. Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China E-mail: yanpf@vip.sina.com
b. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China. Email: tang@ciac.ac.cn

Synthesis of N-methyl-4, 4'-diacetyldiphenylamine (MDA)
A $100-\mathrm{mL}$ round-bottomed Schlenk flask was charged with anhydrous AlCl_{3} $(1.82 \mathrm{~g}, 13.6 \mathrm{mmol})$ and dry dichloromethane $(50 \mathrm{ml})$, and acetyl chloride $(1.07 \mathrm{~g}$, 13.6 mmol), resulting in a yellow transparent solution. A dry dichloromethane solution of N-methyl-phenylaniline ($1.00 \mathrm{~g}, 5.46 \mathrm{mmol}$) was added dropwise to the above solution at $-20^{\circ} \mathrm{C}$. After kept 12 hours at room temperature, the resulting mixture was poured into 50 mL ice-water and alkalized to $\mathrm{pH}=7$ using the aqueous solution of NaOH . The resulting organic layer was dehydrated by anhydrous sodium sulfate about 5 hours and then filtered. The crude product was chromatographed with petroleum ether/ethyl acetate ($\mathrm{v} / \mathrm{v}, 5 / 1$), and then the white product of V-shaped MDA was dried in vacuum ($0.93 \mathrm{~g}, 64 \mathrm{wt} \%$). Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ (267.32): C, 76.38; H, 6.41 ; N, $5.24 \mathrm{wt} \%$. Found: C, 76.37 ; H, $6.40 \mathrm{~N}, 5.24 \mathrm{wt} \%$. IR (KBr, cm^{-1}): 3446 (w), 1600 (s), 1590 (m), 1401 (m), 1363 (s), 1264 (s). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6, $\left.25{ }^{\circ} \mathrm{C}, \mathrm{TMS}\right): \delta=7.92(\mathrm{~d}, J=8.77 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.77 \mathrm{~Hz}, 4 \mathrm{H}), 3.42 \mathrm{ppm}(\mathrm{s}$, $3 \mathrm{H}), 2.52 \mathrm{ppm}(\mathrm{s}, 6 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of MDA was shown in Figure S1.

Figure S1 ${ }^{1} \mathrm{H}$ NMR spectrum of MDA

Figure S2 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{H}_{2} \mathrm{MBDA}$

Structure determination

Suitable single crystals of $\mathbf{1 , 2}$ and MDA were selected for single crystal X-ray diffraction analysis. Diffraction intensity data were collected on an Oxford Diffraction Xcalibur Eos diffractometer with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=$ $0.71073 \AA$). All data were collected at a temperature of 150 K . The structures were solved by the direct methods and refined on F^{2} by full-matrix least-squares using the SHELXTL-97 program. ${ }^{[1]}$ The Ln^{3+} ions were easily located and then non-hydrogen atoms ($\mathrm{Cl}, \mathrm{F}, \mathrm{O}, \mathrm{N}$ and C) were placed from the subsequent Fourier-difference maps. In the case of $\mathbf{1}, \mathrm{Cl} 2$ ion is located on a twofold axis and one $\mathrm{Et}_{3} \mathrm{NH}$ molecule is disordered with $\mathrm{N}(9)$ atom lied on a twofold axis as well. A summary for data collection and refinements were given in Table S1. CCDC: 1054122-4 contained the supplementary crystallographic data for this paper. These data could be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Figure S3 ORTEP plot of 1. The thermal ellipsoids are given at 50\% probability (H atoms and guest species have been omitted for clarity).

Figure S4 ORTEP plot of 2. The thermal ellipsoids are given at 50\% probability (H atoms and guest species have been omitted for clarity).

Figure S5 ORTEP plot of V-shaped MDA. The thermal ellipsoids are given at 50\% probability.

Table S1 Crystal data and structural refinement for $\mathbf{1 , 2}$ and MDA.

Code	1	2	MDA
formula	$\mathrm{C}_{116} \mathrm{H}_{130} \mathrm{Cl}_{1.5} \mathrm{Dy}_{2} \mathrm{~F}_{24} \mathrm{~N}_{9.5} \mathrm{O}_{18}$	$\mathrm{C}_{95} \mathrm{H}_{72.5} \mathrm{Dy}_{2} \mathrm{~F}_{18} \mathrm{~N}_{7.5} \mathrm{O}_{14}$	C17 H17 N O2
Mr	2779.47	2210.10	267.32
color	Colorless	Colorless	Colorless
crystal system	Monoclinic	Triclinic	Triclinic
space group	C2/c	$P-1$	$P-1$
Temperature (K)	150	150	150
$a(\AA)$	45.2139(5)	12.1694(4)	8.2376(6)
b (\AA)	20.4624(2)	19.7909(5)	8.5362(7)
c (\AA)	28.0974(3)	21.6427(6)	10.4219(9)
α (deg)	90	66.933(3)	94.615(7)
β (deg)	100.5900(12)	75.128(3)	98.690(7)
$\gamma(\mathrm{deg})$	90	87.379(2)	99.967(7)
$V\left(\AA^{3}\right)$	25552.4(5)	4626.3(2)	709.21(10)
Z	8	2	2
$\rho\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.445	1.587	1.252
$\mu\left(\mathrm{mm}^{-1}\right)$	1.291	1.706	0.082
$F(000)$	11280	2202	2884
Reflections collected/unique	51469 / 27766	41308 / 20844	5518 / 3204
$R_{\text {int }}$	0.0207	0.0236	0.0143
$\left.R_{1,}, I>2 \sigma(I)\right]$	0.0593	0.0338	0.0476
$w R_{2},[I>2 \sigma(I)]$	0.1665	0.0849	0.1089
R_{1}, (all data)	0.0742	0.0432	0.0739
$w R_{2}$, (all date)	0.1802	0.0906	0.1295
GOF on F^{2}	1.028	1.042	1.031

Table S2 Selected bond lengths (\AA) for $\mathbf{1}$ and $\mathbf{2}$.

1				
Dy1-O11	$2.359(4)$	Dy1-O5	$2.389(4)$	
Dy1-O6	$2.385(4)$	Dy1-O2	$2.408(4)$	
Dy1-O12	$2.376(4)$	Dy1-O1	$2.433(4)$	
Dy1-O13	$2.364(4)$	Dy1-O14	$2.409(4)$	
Dy2-O3	$2.367(4)$	Dy2-O9	$2.399(4)$	
Dy2-O4	$2.372(4)$	Dy2-O15	$2.400(4)$	
Dy2-O7	$2.373(4)$	Dy2-O8	$2.410(4)$	
Dy2-O16	$2.386(4)$	Dy2-O10	$2.412(4)$	
Dy1-O8	$2.277(2)$	Dy2-O10	$2.311(2)$	
Dy1-O3	$2.300(2)$	Dy2-O9	$2.313(2)$	
Dy1-O7	$2.303(2)$	Dy2-O2	$2.316(2)$	
Dy1-O12	$2.327(2)$	Dy2-O1	$2.320(2)$	
Dy1-O11	$2.330(2)$	Dy2-O6	$2.330(2)$	
Dy1-O4	$2.374(2)$	Dy2-O5	$2.351(2)$	
Dy1-N7	$2.573(3)$	Dy2-N4	$2.532(3)$	
Dy1-N6	$2.573(3)$	Dy2-N5	$2.557(3)$	

Table S3 Selected C-H...F and F...F interactions in 1.

C-H...F interactions	Distances (\AA))	C-H...F interactions	Distances (\AA))
C3-H3A...F6	$2.729(10)$	C53-H53A...F9_\#1	$3.307(10)$
C115-H11H...F18	$3.11(2)$	C53-H53B...F2_\#2	$3.414(10)$
C117-H11S...F18_\#3	$3.22(3)$	C61-H61A...F16	$2.727(8)$
C19-H19A...F2	$2.736(9)$	C64-H64A...F21	$2.728(8)$
C24-H24A...F10	$2.726(8)$	C82-H82A...F23	$2.734(7)$
C40-H40A...F8	$2.704(8)$	C45-H45A...F15	$2.720(7)$
F...F interactions	Distances (Å)	F...F interactions	Distances (Å)
F1...F20	$3.088(8)$	F14...F11	$3.031(7)$
F10...F17_\#4	$3.109(8)$	F17...F10_\#4	$3.109(8)$
F11...F14	$3.031(7)$	F13...F23_\#2	$2.937(6)$

Symmetry code used to generate the equivalent atoms: \#1: $x,-y,-1 / 2+z ; \# 2: 1 / 2-x, 1 / 2+y, 1 / 2-z ; \# 3$: 1-x,y,3/2-z; \#4: 1/2-x,1/2-y,1-z.

Table S4 Selected C-H...F and F...F interactions in 2.

C-H...F interactions	Distances (\AA)	C-H...F interactions	Distances (\AA)
C3-H3A...F2	$2.750(4)$	C40-H40A...F7	$2.730(5)$
C3-H3A..F18_\#2	$3.448(5)$	C45-H45A...F18	$2.738(5)$
C19-H19A...F6	$2.708(4)$	C61-H61A...F14	$2.733(5)$
C24-H24A...F10	$2.762(4)$	C67-H67A...F3_\#3	$3.142(5)$
C32-H32B..F17_\#4	$3.337(4)$		
F...F interactions	Distances (\AA)	F...F interactions	Distances ($\AA)$
F2_..F17_\#2	$3.009(3)$	F5...F8_\#2	$3.015(4)$
F2_..F18_\#2	$2.942(4)$	F6...F11_\#1	$3.098(4)$
F11...F6_\#1	$3.098(4)$		

Symmetry code used to generate the equivalent atoms: \#1: $1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z} ; \# 2:-1+\mathrm{x}, \mathrm{y}, \mathrm{z}$; \#3: 1+x,1+y,-1+z; \#4: 2-x, 1-y, -z;

Table S5 The (Ph)C-N-C(Ph) bond angles in the ligand, and the dihedral angles of the two phenyl groups in the same ligand.

	$\mathbf{1}$						2	
Code	N 1	N 2	N 3	N 4	N 1	N 2	N 3	N 1
The (Ph)C-N-C(Ph) bond angles in the ligand containing N n atom (deg)	$120.9(5)$	$120.6(5)$	$120.7(5)$	$121.2(4)$	$122.6(3)$	$122.3(3)$	$121.6(3)$	$121.7(1)$
The dihedral angles of the two phenyl groups bridging by $\mathrm{N} n(\mathrm{deg})$	$62 .(2)$	$56.6(2)$	$66.4(2)$	$55.1(2)$	$51.8(10)$	$54.7(1)$	$60.3(1)$	$61.7(5)$

Figure S6 The coordination geometries of Dy^{3+} ions in $\mathbf{1}$.

Figure S7 The coordination geometries of Dy^{3+} ions in 2.

Figure S8 Plot of χT vs T for $\mathbf{1}$ in an applied dc field of 500 Oe in the temperature range of 1.8-300 K.

Figure $\mathbf{S 9}$ Magnetization as a function of H / T for 1.

Figure S10 Temperature dependence of the in-phase (χ^{\prime}, top) and the out-of-phase ($\chi^{\prime \prime}$, bottom) ac susceptibility from 2 to 14 K under zero dc field for $\mathbf{1}$.

Figure S11 Plot of $\chi T v s T$ for $\mathbf{2}$ in an applied dc field of 500 Oe in the temperature range of $1.8-300 \mathrm{~K}$.

Figure S12 Magnetization as a function of H / T for 2.

Figure S13 Temperature dependence of the in-phase (χ^{\prime}, top) and the out-of-phase ($\chi^{\prime \prime}$, bottom) ac susceptibility from 2 to 18 K under zero dc field for $\mathbf{2}$.

Figure S14 Frequency dependence of the in-phase (χ^{\prime}, top) and out-of-phase ($\chi^{\prime \prime}$, bottom) ac susceptibility from 2 to 14 K under an applied field of 2000 Oe for 1 .

Figure S15 Cole-Cole plots using the ac susceptibility data of $\mathbf{1}(2-12 \mathrm{~K}, 0.5 \mathrm{~K}$ interval).

Figure S16 The Relaxation time is plotted as $\ln (\tau)$ vs T^{1} for $\mathbf{1}$ under an applied field of 2000 Oe.

Figure S17 Frequency dependence of the in-phase (χ^{\prime}, top) and out-of-phase ($\chi^{\prime \prime}$, bottom) ac susceptibility from 2 to 20 K under an applied field of 2000 Oe for $\mathbf{2}$.

Figure S18 Cole-Cole plots using the ac susceptibility data of $\mathbf{2}$ under an applied field of 2000 Oe ($2-13 \mathrm{~K}, 0.5 \mathrm{~K}$ interval).

Figure S19 The Relaxation times are plotted as $\ln (\tau)$ vs T^{1} for $\mathbf{2}$ under an applied field of 2000 Oe.

Figure S20 Thermogravimetric curves for the precipitate of $\mathbf{1}$ (red line: precipitate washed with deionized water; black line: unwashed precipitate).

Figure S21 Thermogravimetric curve for the precipitate of $\mathbf{2}$.

Single crystal analysis indicates the existence of triethylammonium chloride in $\mathbf{1}$ and the thermogravimetric analysis is carried out on the as-synthesized precipitate of 1 (Fig. S20). A total weight loss of $85.74 \mathrm{wt} \%$ is found, which is lower than the expected value $84.19 \mathrm{wt} \%$ for the empirical formula $\left[\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}\right]_{2}\left[\mathrm{Dy}_{2}(\mathrm{MBDA})_{4}\right]$. It is supposed that the impurity of triethylammonium chloride might be involved in the as-synthesized precipitate of $\mathbf{1}$. The precipitate is therefore washed with deionized water and dried under vacuum. The thermogravimetric analysis reveals a total weight loss of $83.91 \mathrm{wt} \%$ in accordance with the calculated value $84.19 \mathrm{wt} \%$. In the first stage, a weight loss of $4.42 \mathrm{wt} \%$ (calcd. $4.28 \mathrm{wt} \%$) is observed, owing to the removal of one triethylamine. In case of the unwashed precipitate, the weight loss of $6.27 \mathrm{wt} \%$ is ascribed to the removal of triethylammonium chloride (1.99 wt\%) and one triethylamine. However, the subsequent decomposition might be a continuous process that it is hard to distinguish the removal of each ligand and second trimethylamine, respectively. The empirical formula of the unwashed precipitate is calculated as $\left[\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}\right]_{2}\left[\mathrm{Dy}_{2}(\mathrm{MBDA})_{4}\right] \cdot 0.35\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N} \cdot \mathrm{HCl}\right)$. The impurity of triethylammonium chloride in the unwashed precipitate is expected to result from excessive triethylamine and chloride anion. Fortunately, it might have been helpful to the crystallization of $\mathbf{1}$. The thermogravimetric curve of the powder of $\mathbf{2}$ indicates a total weight loss of 81.65 $\mathrm{wt} \%$ in good agreement with the calculated value $81.87 \mathrm{wt} \%$ (Fig. S21).

Figure S22 Simulated and experimental PXRD patterns of $\mathbf{1}$.

Figure S23 Simulated and experimental PXRD patterns of $\mathbf{2}$.
The crystals of $\mathbf{1}$ and $\mathbf{2}$ are supposed to be sensitive to the air that the crystals are deteriorated on desolvation, when they are exposed in air.

References:

[1] G. M. Sheldrick, SHELXL-97, Program for X-ray Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.
[2] D. Casanova, M. Llunel, P. Alemany, S. Alvarez, Chem.-Eur. J. 2005, 11, 1479.

