Electronic supplementary information (ESI)

$\mathrm{Hg}(\mathrm{II})$ supramolecular isomers: structural transformation and photoluminescence change

Kedar Bahadur Thapa, Yi-Fen Hsu, Hsuan-Chou Lin and Jhy-Der Chen* Department of Chemistry, Chung-Yuan Christian University, Chung-Li,
Taiwan, R.O.C.

Fig. S1 (a) A drawing showing the $\mathrm{N}-\mathrm{H}---\mathrm{O}$ interactions in 1. (b) A drawing showing the shortest $\pi-\pi$ contact.

(a)

(b)

Fig. $\mathbf{S 2}$ (a) A drawing showing the $\mathrm{N}-\mathrm{H}---\mathrm{O}$ interactions in 2. (b) A drawing showing the shortest $\pi-\pi$ contact.

Fig. $\mathbf{S 3}$ (a) A drawing showing the $\mathrm{N}-\mathrm{H}-\mathrm{-}-\mathrm{O}$ interactions in 3. (b) A drawing showing the shortest $\pi-\pi$ contact.

(a)

(b)

Fig. S 4 (a) A drawing showing the $\mathrm{N}-\mathrm{H}---\mathrm{O}$ interactions in 4. (b) A drawing showing the shortest $\pi-\pi$ contact.

(a)

(b)

Fig. S5 Simulated and experimental powder X-ray patterns for 1.

Fig. S6 Simulated and experimental powder X-ray patterns for 2.

Fig. S7 Simulated and experimental powder X-ray patterns for $\mathbf{1}$ (alternate method).

10	20	30	40	50
2 theta				

Fig. S8 Simulated and experimental powder X-ray patterns for 2 (alternate method).

Fig. S9 Simulated and experimental powder X-ray patterns for 3.

10	20	30	1	40	50
		2 theta			

Fig. S10 Simulated and experimental powder X-ray patterns for 4.

Fig. S11 (a) Powder XRD pattern of $\mathbf{3}$ at variable temperature showing crystal to crystal transformation: (a) simulation of 3, (b) RT, (c) $180^{\circ} \mathrm{C}$, (d) $190^{\circ} \mathrm{C}$, (e) $200^{\circ} \mathrm{C}$ (f) $210^{\circ} \mathrm{C}$ and (g) simulation of 4. (b) Powder XRD patterns showing structural transformation from complex 1 to 2 under hydrothermal condition: (a) simulation of $\mathbf{1}$, (b) $\mathbf{1}$ as synthesized, (c) $\mathbf{2}$ after hydrothermal and (d) simulation of $\mathbf{2}$.

(a)

(b)

Fig. S12 DSC thermogram of complex 1.

Fig. S13 DSC thermogram of complex 2.

Fig. S14 DSC thermogram of complex 3 .

Fig. S15 DSC thermogram of complex 4.

Fig. S16 Solid state UV/Visible spectra of 1-4.

Fig. S17 (a) Solid and (b) solution (0.5 mM in DMF and EtOH) emission/excitation spectra of \mathbf{L} ligand.

(a)

(b)

Ligand	Solvent	Ex (nm)	Em (nm)
\mathbf{L}	DMF	374	421
\mathbf{L}	EtOH	375	422

Fig. S18 Normalized emission spectra of 1-3 in the solid state.

