Electronic supplementary information for

Structures of the Conformational Isomers and Polymorph Modifications of N-substituted 2,6-(E,E)bis(ferrocenylidene)piperid-4-ones: photo- and electrochemically induced E/Z isomerization

Alexander S. Romanov,^{a,b}* Alexey V. Shapovalov,^a Gary F. Angles,^b Tatiana V. Timofeeva,^b Maddalena Corsini,^c Stefania Fusi,^c and Fabrizia Fabrizi de Biani ^{c,*}

^aInstitute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation,

^bDepartment of Natural Sciences, New Mexico Highlands University, Las Vegas, New Mexico 87701,

^c Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, 53100 Siena, Italy

Table S1. ¹H NMR data of the compounds 1–4 (300 MHz, CD_2Cl_2 , δ in ppm) and their protonated forms (300 MHz, CD_2Cl_2 , δ in ppm)

Compound	C_5H_5	C_5H_4	CH ₂	СН	NR (R = H, Me, Et, CH_2Ph)
		4.50 br t (4H), J = 1.2			
1	4.17 s	Hz	3.04 hr s (4H)	7.52 s	1.97 br s (1 H NH)
1	(10H)	4.54 br t (4H), J = 1.2	5.94 01 5 (411)	(2H)	1.97 01 5 (111, 1011)
		Hz			
2	4.22 s	4.55 br s (4H)	3.68 br s (AH)	7.60 s	2.56 br s (3H NMe)
2	(10H)	4.51 br s (4H)	5.08 01 5 (411)	(2H)	2.50 of 3(511, 1000)
3	4.18 s	4.51 t (4H), J = 1.8 Hz	3.61 br d (4H), J =	7.52 s	2.66 quad (2H, NC \underline{H}_2), J = 6.9 Hz
	(10H)	4.45 t (4H), J = 1.8 Hz	1.5 Hz	(2H)	$1.18 t (3H, NCH_2CH_3), J = 6.9 Hz$

					3.78 s (2H, NC <u>H</u> ₂ Ph),
4	4.05 s	4.42-4.40 overlapping	3.63 br d (4H), J =	7.50 s	7.45-7.42 m (2H, NCH ₂ Ph, meta)
	(10H)	m (8H)	1.5 Hz	(2H)	7.38-7.33 m (2H, NCH ₂ Ph, ortho)
					7.30-7.24 m (1H, NCH ₂ Ph, para)
2 ⋅HBF ₄	4.85 s	5.72 br s (4H)	4.46 br $a(4H)$	8.24 s	7.68 (br.s. NH) 2.15 br.s. (24 NMa)
	(10H)	5.25 br s (4H)	4.40 01 5 (411)	(2H)	7.00 (01 S, 1011), 5.15 01 S (511, 1010)
3 ⋅HBF ₄	4.30 s	4.66 br s (4H)	4.73 br s (2H)	7.97 s	8.56 (br s, NH), 3.21 br s (2H, NC <u>H</u> ₂), 1.30 br s
	(10H)	4.46 br s (4H)	4.57 br s (2H)	(2H)	$(3H, NCH_2CH_3)$
4 ⋅HBF ₄	4.98 s	5.84 br s (4H)	4.71 br s (2H)	7.96 s	7.73 (br s, NH), 4.32 s (2H, NC <u>H</u> ₂ Ph),
	(10H)	5.31 br s (4H)	4.51 br s (2H)	(2H)	7.56 br s m (5H, NCH ₂ Ph)

Table S2. ¹³C NMR data of the compounds 1, 2, 3, and 4 (75 MHz, CD_2Cl_2 , δ in ppm)

Compound	1	2	3	4
C ₅ H ₅	69.83	69.83	69.68	69.80
C-H-	71.54	71.52	71.36	71.48
C5114	71.38	71.42	71.19	71.28
CipsoFc	79.13	78.75	78.87	78.78
CH=	135.76	137.02	136.06	136.22
CH ₂	48.11	56.53	54.42	55.09
С	132.07	129.43	130.40	138.62
NR	-	45.38 (R = Me)	$51.77 (R = N\underline{C}H_2CH_3)$	$62.85 (R = \underline{C}H_2Ph)$

			12.61 (R = NCH ₂ \underline{C} H ₃)	130.67, 129.43, 128.79, 127.70 ($\mathbf{R} = \mathbf{CH}_2\mathbf{Ph}$)
С=О	185.68	184.36	185.14	185.19

Table S3. Crystal data, data collection and structure refinement parameters for **2**, **3** and salts $2 \cdot \text{HBF}_4$ and $4 \cdot \text{HBF}_4$.

	2	3	$2 \cdot \text{HBF}_4$	$2 \cdot \text{HBF}_4$	4 ⋅HBF ₄
Empirical formula	C ₂₈ H ₂₇ Fe ₂ NO	C ₂₉ H ₂₉ Fe ₂ NO	(Triclinic) $C_{28}H_{28}BF4Fe_2NO$	(Monoclinic) C ₂₈ H ₂₈ BF4Fe ₂ NO	C ₃₄ H ₃₂ BF ₄ Fe ₂ NO
Molecular weight	505.21	519.23	593.02	593.02	669.12
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	$P2_1$	$P2_1$	P-1	$P2_{1}/c$	C2/c
Crystal color, habit	red, plate	red, plate	black, plate	black, prism	black, plate
Crystal size (mm)	0.29 imes 0.23 imes	0.17 imes 0.11 imes	$0.21 \times 0.26 \times 0.42$	$0.29 \times 0.31 \times 0.49$	$0.09 \times 0.15 \times$
	0.06	0.05	0.42		0.20
a (Å)	5.9820(7)	6.012(3)	12.7933(6)	15.2280(8)	29.902(4)
b (Å)	12.7479(15)	12.956(6)	13.4321(7)	14.2504(8)	7.6059(11)
c (Å)	14.4154(17)	14.400(7)	15.0676(8)	11.8362(6)	28.606(5)
α (°)	90	90	107.1180(10)	90	90

β (°)	95.467(3)	94.957(8)	91.0530(9)	110.2650(10)	110.776(3)
γ (°)	90	90	93.3580(10)	90	90
V (Å ³)	1094.3(2)	1117.6(9)	2468.6(2)	2409.5(2)	6082.7(15)
Z	2	2	4	4	8
D _{calc} (g cm ⁻³)	1.533	1.543	1.596	1.635	1.461
$2\theta_{\max}$ (°)	28.00	26.00	28.00	26.00	26.00
Abs. coeff., μ (Mo-K α) (cm ⁻¹)	1.347	1.321	1.229	1.259	1.007
Absorption correction			SADABS		
T _{max} /T _{min}	0.9235/0.6960	0.9369/0.8066	0.7824/0.6263	0.7116/0.5774	0.9148/0.8240
Number of collected reflections	16333	10471	28268	22825	5979
Number of independent	5221	4391	11899	4739	5810
reflections					
Number of observed reflections	4956	3235	9556	4128	3572
$(I > 2\sigma(I))$					
R _{int}	0.0250	0.0866	0.0258	0.0262	N/A
Number of parameters	289	292	705	326	361

R ₁ (on F for observed	0.0389	0.0556	0.0620	0.0355	0.0663
reflexions) ^a					
wR ₂ (on F ² for all reflexions) ^b	0.1016	0.1331	0.1694	0.0980	0.1765
Weighting scheme		$w^{-1} = \sigma^2(F_0^2) - \sigma^2(F_0^2)$	$(aP)^2 + bP$, where I	$P = 1/3(F_o^2 + 2F_c^2)$	
А	0.05	0.54	0.08	0.05	0.085
В	2.2	0.01	8.1	3.5	15.0
F(000)	524	540	1216	1216	2752
GOF	1.002	1.012	1.021	1.050	1.099
$\Delta \rho_{max} / \Delta \rho_{max} \ (e \ {\rm \AA}^{-3})$	1.388/-0.584	1.091/-0.884	1.678/-1.420	1.202/-0.558	1.044/-1.431
$a \mathbf{P} = \nabla \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E}$					

^a R₁ = $\Sigma |F_o| - |F_c| |/\Sigma(F_o)$ ^b wR₂ = { $\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma w(F_o^2)^2$ }^{1/2}

Table S4. Intermolecular and intramolecular hydrogen bonds (Å, °) found for 2, 3 and salts $2 \cdot HBF_4$ and $4 \cdot HBF_4$.

Compound	D–H···A	d(D–H)	d(H···A)	d(D…A)	DHA
2	C27A–H27A ^a O1	1.00	2.34	3.237(4)	149.3(2)
3	C27A-H27A ^a ····O1	1.00	2.40	3.279(8)	145.9(5)
	C7B–H7B ^b O1	1.00	2.70	3.603(8)	156.4(5)
	C14C-H14C ^c N1	1.00	2.60	3.562(7)	162.0(5)
2 ·HBF ₄ (Monoclinic)	N1A-H1A ^d ···O1	0.98(5)	1.88(5)	2.837(5)	163.0(3)

	C3–H3A…F1	1.00	2.42	3.279(5)	145.3(4)
	C3–H3A…F4	1.00	2.66	3.405(6)	132.4(4)
	C6A-H6AeF3	1.00	2.40	3.335(6)	168.2(5)
	C17–H17A…F3	1.00	2.39	3.293(6)	149.2(5)
	C26–H26A…F4	1.00	2.51	3.452(6)	156.4(5)
2·HBF ₄ (Triclinic)	N1A–H1A…F5	0.93(7)	1.88(7)	2.808(7)	176.1(6)
	СЗА–НЗАВ…F2	1.00	2.41	3.261(7)	143.1(6)
	C3A–H3AB…F4	1.00	2.43	3.333(7)	150.7(6)
	C4–H4AA…F4	1.00	2.46	3.354(8)	149.7(6)
	C15A–H15A…F8	1.00	2.62	3.298(5)	125.2(5)
	C25A-H25B…F5	1.00	2.62	3.563(5)	156.8(5)
	N1B–H1B…O1AB ^f	0.92(7)	2.01(7)	2.706(5)	130.5(6)
	$N1BH1BF8A^{\rm f}$	0.92(7)	2.36(7)	2.960(5)	122.7(6)
	$C3BH3BBF1^{\rm f}$	1.00	2.34	3.244(6)	150.9(6)
	$C4B-H4BA\cdots F8^{\rm f}$	1.00	2.40	2.987(6)	117.4(6)
	C7B–C7BA····F6	1.00	2.24	3.160(6)	155.9(6)
	C18B-H18B…F1	1.00	2.43	3.120(7)	125.4(6)
$4 \cdot HBF_4$	N1–H1A…F4A ^g	0.93(5)	1.55(5)	2.466(9)	167.2(7)
	C28–H28A…F4 ^g	1.00	2.45	3.375(10)	148.4(7)
	C7–H7A…F1	1.00	2.17	2.913(11)	130.7(7)
	C3–H3A…F3	1.00	2.06	2.941(9)	147.4(7)

Symmetry transformations used to generate equivalent atoms: a = 1 + x, y, z; b = 2 - x, -1/2 + y, -z; c = 2 - x, 1/2 + y, -z; d = -x, 1 - y, 1 - z; e = x, 3/2 - y, 1/2 + z; f = x, 1 + y, z; g = x, -1 + y, z.