Capturing the structural diversification upon thermal desolvation of a robust metal organic frameworks via a single-crystal-to-single-crystal transformation[†]

Sandeep Kumar^a and Sanjay K. Mandal^{a*}

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali (Punjab) 140306, INDIA

Supplementary Information

Fig S1. Gas adsorption isotherms for **2** (desolvated **1**). Filled squares, adsorption; circles, desorption.

Fig S2. FTIR spectrum of 1.

Fig S3. Crystal structure of **1** with the coordination environment around Zn shown on the right (symmetry codes for equivalent positions are: ' = -x, -y+1, -z+2; '' = x+1/2, -y+3/2, z+1/2. Hydrogen atoms are omitted for clarity.

Fig S4. Schematic representaion of the pores in 1 without the solvent molecules.

Fig S5. Topological view of 1.

Fig S6. Simulated and experimental powder X-ray diffraction patterns of 1.

Fig S8. Schematic representation of the desolvation process (loss of DMF and water molecules in the pores) of **1** to **2**.

Fig S9. Monitoring of the desolvation (loss of DMF and water molecules in the pores) of **1** to **2** by FTIR spectroscopy. Note that only partial decrease in the intensity of the peak at 3433 cm⁻¹ due to water is observed because of the re-absorption of moisture during the recording of the spectrum under ambient condition with the ground sample having a lot more surface area. On the other hand, re-absorption of DMF by **2** to form **1** was found to indicate the reversibility of the process.

Fig S10. Crystal structure of **2** with the coordination environment around Zn shown on the right (symmetry codes for equivalent positions are: ' = -x, -y, -z+1; '' = x+1/2, -y+1/2, z-1/2). Hydrogen atoms are omitted for clarity.

Fig S11. Topological view of **2**.

Fig S12. TGA scans of various solvates of 1.

Scheme S1. Synthesis of H₂bpaipa.

Fig S14. ¹³C NMR spectrum of H₂bpaipa in D₂O.

PPM

Т	abl	le	S1	l. (Cr	yst	al	log	gra	ph	ic	da	ata	a	nd	re	fin	em	nen	tı	oar	am	ete	ers	for	1	and	2	2.
						_			-																				

Compound	1	2
Chemical Formula	$C_{23}H_{26}N_4O_7Zn$	$C_{20}H_{15}N_3O_4Zn$
Formula Weight	535.85	426.72
Temperature (K)	100	100
Wavelength (Å)	0.71073	0.71073
Crystal System	Monoclinic	Monoclinic
Space Group	$P2_1/n$	$P2_1/n$
a (Å)	8.7542(8)	8.485(5)
b (Å)	16.4242(15)	14.529(9)
c (Å)	15.9879(15)	14.073(8)
a (°)	90	90
β (°)	91.709(2)	94.11(3)
g (°)	90	90
Z	4	4
$V(Å^3)$	2297.7(4)	1730.4(17)
Density (mg/cm ³)	1.549	1.638
μ(mm ⁻¹)	1.122	1.454
F(000)	1112	872
Theta (°) Range	1.78 to 25.00	2.02 to 25.40
for Data Coll.		
Reflections Collected	12340	8187
Independent Reflections	4026	3130
Reflections with $I > 2\sigma(I)$)	3076	1399
R _{int}	0.0467	0.138
No. of Parameters refined	318	253
GOF on F ²	1.091	0.980
Final R_1^a/wR_2^b (I >2 σ (I))	0.0443/0.1123	0.0817/0.1894
Weighted R_1/wR_2 (all data)	0.0606/0.1215	0.1826/0.2307
Largest diff. peak	0.704	0.768
and hole(eÅ-3)	and -0.722	and -0.473

 $\overline{{}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. \ ^{b}wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}, \text{ where } w = 1/[\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP], P = (F_{o}^{2} + 2F_{c}^{2})/3.$

Table S2. Selected bond distances (Å) and angles (degree) for 1 and 2.

<u>1</u>

Bond Lengths (Å)

Zn1-O1'	1.989(2)	Zn1-N3	2.059(3)
Zn1-O3"	2.059(2)	Zn1-N2	2.088(3)
Zn1-N1	2.399(3)		

Bond Angles (°)

O1'-Zn1-N3	107.49(11)	O1'-Zn1-O3"	91.11(9)
N3-Zn1-O3"	102.97(11)	01'-Zn1-N2	93.18(11)
N3-Zn1-N2	150.47(11)	O3"-Zn1-N2	97.32(10)
01'-Zn1-N1	130.53(10)	N3-Zn1-N1	75.50(10)
O3"-Zn1-N1	137.45(9)	N2-Zn1-N1	75.04(10)

Symmetry codes for equivalent positions are: '=-x, -y+1, -z+2; "=x+1/2, -y+3/2, z+1/2

<u>2</u>

Bond Lengths (Å)

Zn1-O1'	1.938(7)	Zn1-N3	2.116(8)
Zn1-O3"	2.007(7)	Zn1-N2	2.065(9)
Zn1-N1	2.340(8)		

Bond Angles (°)

O1'-Zn1-N3	92.5(3)	O1'-Zn1-O3"	103.0(3)
N3-Zn1-O3"	89.3(3)	01'-Zn1-N2	107.4(3)
N3-Zn1-N2	149.2(3)	O3"-Zn1-N2	108.1(3)
01'-Zn1-N1	113.8(3)	N3-Zn1-N1	74.9(3)
O3"-Zn1-N1	140.1(3)	N2-Zn1-N1	75.7(3)

Symmetry codes for equivalent positions are: '=-x, -y, -z+1; "=x+1/2, -y+1/2, z-1/2