## Supporting Information

## Crystalline Transformations of Dinaphthyridinylamine Derivatives with Alteration of Solid-state Emission in Response to External Stimuli

Ryusuke Hagihara,<sup>1</sup> Naomi Harada,<sup>1</sup> Satoru Karasawa\*,<sup>1,2</sup> and Noboru Koga\*<sup>1</sup>

- <sup>1</sup>. Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka,
- 812-8582 Japan
- <sup>2</sup>. PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012 Japan

## Contents

- S1. Figure S1. <sup>1</sup>H NMR spectra for **3-\beta** and **3-\beta**'.
- S2. Figure S2. Molecular structures and packings of 1 and water molecules forming 2-fold helical structure.
- S3. Figure S3. Molecular packing of **3-β**'.
- S4. Figure S4. Fingerprint plots by Harshfeld surface calculations of  $3-\alpha$  and  $3-\beta$ .
- S5. Table S1. Photophysical properties of 1, 2, and 3 in various solvents.
- S6. Figure S5. Absorption and emission spectra of 1, 2, and 3 in various solvents.
- S7. Figure S6. Spectra of absorption for 1 3 and Emission for 1 and 2 in solid state. Emission spectra of the glass sample for 3.
- S8. Figure S7. Emission spectra (a) and XRD patterns (b) of  $3-\alpha$ , the ground powder of  $3-\alpha$ , and the ground powder left under MeOH vapor
- S9. Figure S8. XRD patterns of 1 and 2.
- S10. Figure S9. DSC profiles 1 and 2.
- S11. Figure S10. DSC profile of the powder sample obtained from  $3-\alpha$ .
- S12. Figure S11. XRD pattern of **3-** $\beta$ ', the powder sample obtained from **3-** $\beta$ ' by grinding, and the resulting powder by heating at 100 °C together with the simulation obtained from the result of **3-** $\alpha$  by SXRD.
- S13. Figure S12. Photographs taken under irradiation at 365 nm for thermal transformation from powder (amorphous) to  $3-\alpha$  and from  $3-\beta$ ' to  $3-\alpha$ .
- S14. Figure S13. Emission spectra of  $3-\beta$ ,  $3-\beta'$ , and  $3-\beta'$  left under MeOH vapor for 1 day.
- S1



Figure S1. <sup>1</sup>H NMR spectra of the crystals for  $3-\alpha$  (a) and  $3-\beta$  (b) dissolved in CDCl<sub>3</sub>. Arrow in (b) indicates methyl group of MeOH molecules. Right figures are the expansion in the aromatic region.







Figure S2. Molecular structures (a) and packings (b) of **1** and water molecules forming 2-fold helical structure (c). Green dotted line in (a) indicate hydrogen bonds between N atoms and a water molecule by 1.80 Å (a;  $r_{H^-O(H2O)}$ ), 2.495 Å (b;  $r_{N-H(H2O)}$ ), and 2.135 Å (c;  $r_{N-H(H2O)}$ ), respectively. Top and bottom in (b) represent views projecting along *a* and *c* axes, respectively and trifluoromethyl groups and H atoms are omitted for a sake of clarity. Sky blue dotted lines in (c) indicate hydrogen bonds by 2.034 Å within helical 1D structure of water molecules.

(b)







Figure S3. Molecular packing of  $3-\beta$ ' projection of a (a), b (b), and c (c) axes, respectively. MeOH molecules are shown as space filling model.



Figure S4. Fingerprint plots by Harshfeld surface calculations of  $3-\alpha$  (a) and  $3-\beta$  (b). The red and green circles indicate the intermolecular short contact of CH-N and H-H, respectively.

|                                                    | <i>n</i> -hexane             | Bu <sub>2</sub> O            | CHCl <sub>3</sub>                                     | AcOEt                       | МеОН                        |
|----------------------------------------------------|------------------------------|------------------------------|-------------------------------------------------------|-----------------------------|-----------------------------|
|                                                    |                              | $\lambda_{max}^{abs}$ / $nm$ | $(\log \varepsilon / \text{ cm}^{-1} \text{ M}^{-1})$ |                             |                             |
| 1                                                  | 384 (4.53)                   | 392 (4.61)                   | 388 (4.61)                                            | 392 (4.61)                  | 393 (4.61)                  |
| 2                                                  | 396 (4.46)                   | 398 (4.46)                   | 399 (4.46)                                            | 396 (4.46)                  | 395 (4.46)                  |
| 3                                                  | 390 (4.43)                   | 390 (4.40)                   | 393 (4.40)                                            | 391 (4.40)                  | 392 (4.41)                  |
| $\lambda_{\max}^{f} / \operatorname{nm}(\phi)$     |                              |                              |                                                       |                             |                             |
| 1                                                  | 387 (0.09)                   | 405 (0.26)                   | 416 (0.21)                                            | 416 (0.38)                  | 447 (0.09)                  |
| 2                                                  | 414 (0.08)                   | 427 (0.12)                   | 428 (0.25)                                            | 446 (0.17)                  | 440 (0.01)                  |
| 3                                                  | 510 (0.25)                   | 545 (0.08)                   | 558 (0.04)                                            | - (0.01>)                   | - (0.01>)                   |
| $\Delta^{\text{f-ab}} / \text{nm}(\text{cm}^{-1})$ |                              |                              |                                                       |                             |                             |
| 1                                                  | 3 (3.3 x 10 <sup>6</sup> )   | 13 (7.7 x 10 <sup>5</sup> )  | 28 (3.6 x 10 <sup>5</sup> )                           | 24 (4.2 x 10 <sup>5</sup> ) | 54 (1.9 x 10 <sup>5</sup> ) |
| 2                                                  | 18 (5.6 x 10 <sup>5</sup> )  | 29 (3.4 x 10 <sup>5</sup> )  | 29 (3.4 x 10 <sup>5</sup> )                           | 50 (2.0 x 10 <sup>5</sup> ) | 45 (2.2 x 10 <sup>5</sup> ) |
| 3                                                  | 120 (8.3 x 10 <sup>4</sup> ) | 155 (6.5 x 10 <sup>4</sup> ) | 165 (6.1 x 10 <sup>4</sup> )                          | -                           | -                           |
|                                                    |                              |                              |                                                       |                             |                             |

Table S1. Photophysical properties of 1, 2, and 3 in various solvents.





Figure S5. Absorption (dotted line) and emission (solid line) spectra of 1 (a), 2 (b), and 3 (c) in *n*-hexane (violet), Bu<sub>2</sub>O (blue), CHCl<sub>3</sub> (green), AcOEt (black), and MeOH (red), respectively.

S6.



Figure S6. Absorption (dotted lines) and emission (solid lines) spectra of **1** (a) and **2** (b) in crystalline (red) and ground powder sample (blue). (c) Absorption spectra of **3** in **3**- $\alpha$  (light blue), **3**- $\beta$  (red), **3**- $\beta$ ' (blue), glass (purple), and ground powder sample (green). Emission spectra of the glass sample for **3** (d).



Figure S7a. Emission spectra of **3**- $\alpha$  (black), the ground powder of **3**- $\alpha$  (light green), and the ground powder left under MeOH vapor for 2 day (red).



Figure S7b. Alteration of XRD patterns of the ground sample (red) of  $3-\alpha$ , subsequently exposed to MeOH vapor for 5 day (blue), and the simulation pattern (black) of  $3-\alpha$  obtained by SXRD.



Figure S8. XRD patterns of the crystal (blue) and its ground samples (light green) for 1 (a) and 2(b) with the simulation pattern (red).



Figure S9. DSC profiles in the first (red line) and second (blue line) cycle of 1 (a) and 2(b).



Figure S10. DSC profile of the powder sample obtained from  $3-\beta'$  by grinding in first (red) and second (blue) cycle.



Figure S11. XRD pattern of **3-** $\beta$ ' (b), the powder obtained from **3-** $\beta$ ' by grinding (c), and the resulting powder by heating at 100 °C together with the simulation obtained from the result of **3-** $\alpha$  by SXRD (a).



Figure S12. Photographs taken under irradiation at 365 nm for thermal transformation (a) from powders (amorphous) (left) to  $3-\alpha$  (right) and (b) from  $3-\beta$ ' (left) to  $3-\alpha$  (right).



Figure S13. Emission spectra of **3-** $\beta$  (red), **3-** $\beta$ ' (black), and **3-** $\beta$ ' left under MeOH vapor for 1 day (blue)