Supporting Information

High-Energy Organic Groups Induced Spectrally Pure Upconversion Emission for Zirconate-/hafnate-Containing Nanocrystals

Xianghong He,^{†, ‡} Bing Yan^{*,†}

[†]Department of Chemistry, Tongji University, Shanghai, 200092, China
[‡]School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China

Figure S1 SEM images of as-obtained K_3ZrF_7 (a) and K_3HfF_7 (b) NCs.

Phase and compositional analyses of Yb^{3+}/Er^{3+} -codoped $K_3(Zr,Hf)F_7$ nanophosphors

XRD results of K₃ZrF₇:Yb³⁺,Er³⁺ samples with different concentrations of Yb³⁺ and/or Er³⁺ (panel a of Figure S2, and Figure S3) verify that the cubic K₃ZrF₇ structure is retained even as Yb³⁺ doping content reaches as high as 40 mol%. Compositional analyses of K₃ZrF₇:Yb³⁺,Er³⁺($x/2 \mod \%$, 5 mol% $\leq x \leq 40 \mod \%$) and $K_3(Zr_{0.78-t}Hf_t)F_7:Yb^{3+},Er^{3+}(20/2 \text{ mol}\%, 0.28 \le t \le 0.78)$ samples using energy dispersive X-ray spectroscopy (EDS) (Figures S4 and S5) confirm that the chemical signatures taken within different parts of the sample are identical within experimental accuracy and that the as-obtained samples contain K, Zr/Hf, F, Yb, and Er elements. In addition, the actual atomic ratios of these elements were consistent with the designed nominal stoichiometry in each case. With increasing of Yb³⁺ doping level, the diffraction peaks shifted gradually towards the low-angle direction (panel b of Figure S2), which can be attributed to the substitution of Zr^{4+} with an ionic radius of 0.78 Å by Yb³⁺ with a larger ionic radius of 0.93 Å under seven F⁻ coordination environment.^[S01] Figure **S6** revealed the XRD patterns $K_3(Zr_{0.78-})$ $_{t}$ Hf_t)F₇:Yb³⁺,Er³⁺(20/2 mol%) samples. Since Hf⁴⁺ and Zr⁴⁺ own close ionic radii (0.76) and 0.78 Å for Hf^{4+} and Zr^{4+} , respectively), the products also remained single phase in the case of various contents of Hf⁴⁺.

Ref. [S01] D. Q. Chen, L. Lei, R. Zhang, A. P. Yang, J. Xu and Y. S. Wang, Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na₃Zr(Hf)F₇ nanocrystals, Chem. Commun., 2012, 48, 10630–10632.

Figure S2 (a) XRD patterns in the 2 θ range from 10° to 70°, and (b) XRD patterns in the 2 θ range from 26° to 30° of K₃ZrF₇:Yb³⁺,Er³⁺(x/2 mol%) samples with different concentrations of Yb³⁺ (x value).

Figure S3 XRD patterns of K_3ZrF_7 :Yb³⁺,Er³⁺(20/y mol%) samples with different doping contents of Er³⁺(y value).

Figure S4 EDS patterns of K_3ZrF_7 : Yb³⁺, $Er^{3+}(x/2 \text{ mol}\%)$ samples with different concentrations of Yb³⁺ (x value).

Figure S5 EDS patterns of $K_3(Zr_{0.78-t}Hf_t)F_7$:Yb³⁺,Er³⁺(20/2 mol%) samples with various contents of Hf⁴⁺ (*t* value).

Figure S6 XRD patterns of $K_3(Zr_{0.78-t}Hf_t)F_7$:Yb³⁺,Er³⁺(20/2 mol%) samples with various contents of Hf⁴⁺ (*t* value).

Figure S7 FT-IR spectrum of K_3ZrF_7 :Yb³⁺,Er³⁺(20/2 mol%) sample annealed at 350 °C.

Figure S8 FT-IR spectrum of K₃ZrF₇:Yb³⁺,Er³⁺ NCs.