Electronic Supplementary Information Crystal engineering of cadmium coordination polymers decorated by nitro-functionalized thiophene-2,5dicarboxylate and structurally related bis(imidazole) ligands with varying flexibility

		Compound	1 ^a		
Cd(1)-O(1)	2.227(4)	Cd(1)-O(3)#2	2.298(4)	Cd(1)-O(7)	2.388(5)
Cd(1)-O(4)#2	2.604(4)	Cd(1)–N(1) 2.260(5)		Cd(1)-N(2)#1	2.298(5)
O(1)-Cd(1) -N(1)	101.26(17)	O(1)-Cd(1)-N(2) #2 90.6(2) N		N(1)-Cd(1)-N(2)#1	106.65(18
O(1)-Cd(1)-O(3)#2	111.41(16)	N(1)-Cd(1)-O(3)#2 144.76(15) N(2		N(2)#1-Cd(1)-O(3)	#2 86.37(16)
O(1)-Cd(1)-O(7)	87.75(19)	N(1)-Cd(1)-O(7) 87.15(17) N(2)#1-Cd(1)-O(7)		166.14(18	
O(3)#2-Cd(1)-O(7)	81.45(16)	O(1)-Cd(1)-O(4)#2	164.17(16)	N(1)-Cd(1)-O(4)#2	93.68(14)
N(2)-Cd(1)-O(4)#2	90.10(16)	O(3)#2-Cd(1)-O(4)#2	52.87(13)	O(7)-Cd(1)-O(4)#2	87.79(16)
^{<i>a</i>} Symmetry codes: #1x,	-y+3/2, z-1/2; #	∉2 x+1, y, z.			
		Compound	l 2 ^b		
Cd(1)-O(1)	2.378(7)	Cd(1)-O(2)#4	2.476(7)	Cd(1)-O(3)#3	2.481(9)
Cd(1)-O(4)#3	2.323(7)	Cd(1)-N(1)	2.246(10)	Cd(1)-N(4)#2	2.221(10)
O(1)-Cd(1)-O(2)#4	164.4(3)	O(1)-Cd(1)-O(3)#3	92.9(3)	O(2)#4-Cd(1)-O(3)	#3 80.4(3)
O(4)#3-Cd(1)-O(3)#3	55.4(3)	O(4)#3-Cd(1)-O(2)#4 80.3(3)		O(4)#3-Cd(1)-O(1)	84.3(3)
N(1) -Cd(1)-O(1)	92.2(3)	N(4)#2-Cd(1)-O(1) 97.7(3) N(1)-Cd(1)-O(4)#		143.0(3)	
N(4)#2-Cd(1)-O(4)#3	103.5(3)	N(4)#2-Cd(1)-N(1) 113.5(3) N(4)#2-Cd(1)-O(2)		#2 83.6(3)	
N(1)-Cd(1)-O(2)#4	101.6(3)	N(4)#2-Cd(1)-O(3)#3	155.3(3)	N(1)-Cd(1)-O(3)#3	88.1(3)
^b Symmetry codes: #1 x-1	l, -y+3/2, z-1/2	; #2 -x+2, -y+2, -z+1; #3	x+1, -y+3/2, z+	1/2; #4 x+1, y, z.	
		Compound 3 ^c			
Cd(1)-O(1)	2.359(2)	Cd(1) -O(2)#1	2.249(2)	Cd(1)-O(3)#2	2.404(2)
Cd(1)-O(4)#2	2.353(2)	Cd(1) –N(3)	2.332(3)	(3) $Cd(1)-N(4)$ 2.	
O(2)#1-Cd(1)-N(4)	90.04(9)	O(2)#1-Cd(1)-N(3)	82.63(9) N(4)-Cd(1)-N(3)		97.34(9)
O(2)#1-Cd(1)-O(4)#2	96.30(8)	N(4)-Cd(1)-O(4)#2	160.89(9)	N(3)-Cd(1)-O(4)#2	101.33(9)
O(2)#1-Cd(1)-O(1)	95.49(8)	N(4)-Cd(1)-O(1)	79.59(8)	N(3)-Cd(1)-O(1)	176.43(8)
O(4)#2-Cd(1)-O(1)	81.87(8)	O(2)#1-Cd(1)-O(3)#2	150.91(9)	N(4)-Cd(1)-O(3)#2	118.83(9)
N(3)-Cd(1)-O(3)#2	96.17(9)	O(4)#2-Cd(1)-O(3)#2	55.25(8)	O(1)-Cd(1)-O(3)#2	86.95(7)
^c Symmetry codes: #1 -x+	+3/2,-y+1/2,-z+	-1; #2 -x+1,-y+1,-z+1; #3	-x+3/2,y+1/2,-z	x+3/2; #4 -x+3/2,y-1/2,-	z+3/2.
		Compound 4 ^d			
Cd(1)-O(1)	2.260(4)	Cd(1)-O(2)	2.519(4)	Cd(1)-N(1)	2.239(3)
N(1)-Cd(1)-N(1)#1	96.84(18)	N(1)-Cd(1)-O(1)	126.30(13)	N(1)-Cd(1)-O(1)#1 93.14(14)
O(1)-Cd(1)-O(1)#1	121.7(2)	N(1)-Cd(1)-O(2)	N(1)-Cd(1)-O(2) 86.12(14)		0(2) 136.73(1
O(1)-Cd(1)-O(2)	53.35(13)	O(1)#1-Cd(1)-O(2) 96.42(15)	O(2)-Cd(1)-O(2)#1 120.3(2)
^d Symmetry codes: #1 x+	1, -y+3/2, z+1/	2.			
		Compound 5 ^e			
Cd(1)–O(1)	2.342(2)	Cd(1)–O(2)	2.448(2)	Cd(1)-O(3)	2.288(2)
Cd(1)-O(4)	2.591(3)	Cd(1)-N(1)	2.238(2)	Cd(1)#1 - N(4)	2.241(2)

N(1)-Cd(1)-N(4)#2	99.29(7)	N(1)-Cd(1)-O(4)	135.62(8)	N(4)#2-Cd(1)-O(3)	100.96(9)
N(1)-Cd(1)-O(1)	97.96(8)	N(4)#2-Cd(1)-O(1)	143.46(8)	O(3)-Cd(1)-O(1)	88.52(9)
N(1)-Cd(1)-O(2)	134.27(8)	N(4)#2-Cd(1)-O(2)	91.25(7)	O(3)-Cd(1)-O(2)	84.25(8)
O(1)-Cd(1)-O(2)	54.33(7)	N(1)-Cd(1)-O(4)	84.05(8)	N(4)#2-Cd(1)-O(4)	108.85(9)
O(3)-Cd(1)-O(4)	52.08(8)	O(1)-Cd(1)-O(4)	104.78(9)	O(2)-Cd(1)-O(4)	133.98(7)
^e Symmetry codes: #1-x+	-2, y+1/2, -z+1/	/2; #2 -x+2, y-1/2, -z+1/2.			

Table S2 Hydrogen Bond Lengths (Å) and Bond Angles (°) in Complexes 1, 2 and 5.

Compound 1 ^a					
D−H···A	d(D-H)	$d(H^{\dots}A)$	$d(D^{\dots}A)$	<(DHA)	
O(7)- $H(1W)$ ···O(2) ⁱ	0.85	2.11	2.919(7)	157.7	
$O(7)$ -H(2W) \cdots O(3) ⁱⁱ	0.85	1.93	2.740(6)	159.5	
$O(8)$ -H(3W) \cdots O(2) ⁱⁱⁱ	0.85	2.46	3.206(14)	146.4	
$O(8)$ -H(4W) \cdots O(4) ^{iv}	0.85	2.48	3.311(15)	167.7	
^a Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+2, -z+2; (iii) -x+1, y-1/2, -z+3/2; (iv) x+1, y, z.					
Compound 2 ^b					
D–H…A	d(D-H)	$d(H^{\dots}A)$	$d(D^{\dots}A)$	<(DHA)	
O(7)- $H(1W)$ ···O(4) ⁱ	0.85	2.17	3.015(12)	179.2	
O(7)-H(2W)S(1)	0.85	2.95	3.353(9)	111.3	
O(7)-H(2W)O(3)	0.85	2.15	2.998(13)	179.4	
^b Symmetry codes: (i) x, -y+3/2, z-1/2.					

Compound 5 °					
D–H…A	d(D–H)	$d(H^{\dots}A)$	$d(D^{\dots}A)$	<(DHA)	
O(9)−H(1W)···O(4)	0.85	2.12	2.923(4)	156.3	
$O(9)$ -H(2W) \cdots O(6) ⁱ	0.85	2.38	3.233(4)	179.4	
^c Symmetry codes: (i) x+1, -y+1/2, z+1/2.					

Fig. S1 Coordination environment of Cd^{2+} ion in 1. All water and hydrogen atoms are omitted for clarity. Symmetry transformation used to generate equivalent atoms: (A) 1 + x, y, z; (B) x, 1.5 - y, -0.5 + z.

Fig. S2 Coordination environment of Cd^{2+} ion in **2.** All water and hydrogen atoms are omitted for clarity. Symmetry transformation used to generate equivalent atoms: (A) 1 + x, 1.5 - y, 0.5 + z; (B) 1 + x, y, z; (C) 2 - x, 2 - y, 1 - z.

Fig. S3 Coordination environment of Cd^{2+} ion in **3**. All water and hydrogen atoms are omitted for clarity Symmetry transformation used to generate equivalent atoms (A) 1.5 - x, 0.5 - y, 1.5 - z; (B) 1.5 - x, 0.5 + y, 1.5 - z.

Fig. S4 Coordination environment of Cd^{2+} ion in **4**. All water and hydrogen atoms are omitted for clarity Symmetry transformation used to generate equivalent atoms (A) x, 1.5 - y, 0.5 - z; (B) -0.5 - x, 1 - y, z; (C) -0.5 - x, 0.5 + y, 0.5 - z; (D) 1 - x, 1 - y, 1 - z.

Fig. S5 Coordination environment of Cd^{2+} ion in 5. All water and hydrogen atoms are omitted for clarity. Symmetry transformation used to generate equivalent atoms: (A) 2 - x, -0.5 + y, 0.5 - z.

Fig. S6 1 H NMR spectrum of H₂ntdc and Hntc ligands.

11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

Fig. S7 PXRD patterns of as-synthesized and simulated 1-5.

Fig. S8 TG curves of complexes 1-5.

Fig. S9 Solid-state emission spectra of 1-4.

