Supporting Information

Metal-controlled structural variations of coordination architectures constructed from the flexible 1*H*benzimidazole-1-propionic acid

Zhong Zhang*, Yan-Fang Feng, Qiu-Yu Wei, Kun Hu, Zi-Lu Chen and Fu-Pei Liang*

Corresponding authors

Zhong Zhang and Fu-pei Liang

Affiliation and address

Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China

E-mail address, telephone and fax numbers of the corresponding authors

e-mail: zhangzhong@mailbox.gxnu.edu.cn telephone: +86-773-5854878 fax: +86-773-5832294

Fig.S1 Simulated and experimental powder X-ray diffraction (PXRD) patterns of complexes 1–6: (a) for 1, (b) for 2, (c) for 3, (d) for 4, (e) for 5 and (f) for 6.

(a)

(c)

(e)

Fig.S2 TGA curves for complexes 1–5.

Fig.S3 The normalized solid-state photoluminescent excitation spectra of ligand Hbiap and complexes **3–6** at room temperature.

Complex 1			
Co1–N2	2.034(3)	Co1–N4	2.039(3)
Co1–O5	1.974(2) Co1–O7#1		1.991(2)
Co2–N6	2.045(3) Co2–N8		2.045(3)
Co2–O1	1.954(3)	3) Co2–O3#2	
N2-Co1-N4	103.01(11)	3.01(11) N2–Co1–O5	
N2-Co1-O7#1	103.96(10)	N4Co1O5	110.71(11)
N4-Co1-O7#1	#1 117.58(10) O5–Co1–O7#1		105.26(11)
N6-Co2-N8	114.13(12)	N6-Co2-O1	111.97(11)
N6-Co2-O3#2	109.11(11)	N8-Co2-O1	102.29(11)
N8-Co2-O3#2	111.95(11)	O1–Co2–O3#2	107.06(11)
Complex 2			
Cu1–N2	2.001(2)	Cu1–N4#1	2.011(2)
Cu1–O3	1.985(2)	Cu1–O5	1.975(2)
Cu1–O9	2.409(2)	Cu2–N6	1.998(2)
Cu2–N8	1.996(2)	Cu2–O1	1.947(2)
Cu2–O8#2	1.952(2)		
N2-Cu1-N4#1	170.15(8)	N2–Cu1–O3	89.24(8)
N2-Cu1-O5	90.04(8)	N2-Cu1-O9	95.73(8)
O3-Cu1-N4#1	87.61(7)	O5-Cu1-N4#1	92.43(7)
O9-Cu1-N4#1	93.89(7)	O3–Cu1–O5	175.88(7)
O3–Cu1–O9	96.28(7)	O5–Cu1–O9	87.83(7)
N6-Cu2-N8	179.28(9)	N6-Cu2-O1	89.74(8)
N6-Cu2-O8#2	89.75(8)	N8-Cu2-O1	90.60(8)
N8-Cu2-O8#2	89.92(8)	O1-Cu2-O8#2	179.30(8)
Complex 3			
Ag1–N2	2.359(8)	Ag1-N2#1	1.969(6)
O2–H2C	1.23	N2-Ag1-N2#1	154.47(12)
Complex 4			
Zn1–N2	2.035(2)	Zn1–N4	2.033(2)
Zn1–O1#1	1.954(2)	Zn1–O3#2	1.955(2)
N2-Zn1-N4	107.89(7)	N2-Zn1-O1#1	112.76(7)
N2-Zn1-O3#2	109.92(7)	N4-Zn1-O1#1	117.97(7)
N4-Zn1-O3#2	100.76(7)	O1A-Zn1-O3#2	106.72(7)
Complex 5			
Cd1–N2	2.257(3)	Cd1–N4	2.292(3)
Cd105	2.415(2)	Cd106	2.322(2)
Cd1–O7	2.452(2)	Cd1–O8 2.315(2	

Table S1 Selected bond lengths (Å) and angles (°) for complexes $1\!-\!\!6.$

Cd2–N6	2.258(3)	Cd2N8	2.243(3)
Cd2O1	2.515(2)	Cd2O2#1	2.294(3)
Cd2O3	2.368(3)	Cd204	2.383(2)
N2-Cd1-N4	97.04(10)	N2Cd1O5	98.51(10)
N2-Cd1-O6	109.67(9)	N2Cd1O7	85.98(9)
N2-Cd1-O8	137.19(9)	N4Cd1O5	141.06(9)
N4-Cd1-O6	86.36(9)	N4Cd1O7	99.15(9)
N4-Cd1-O8	104.97(9)	O5Cd1O6	54.78(8)
O5-Cd1-O7	117.35(8)	O5Cd1O8	86.96(8)
O6-Cd1-O7	162.77(9)	O6Cd1O8	107.98(9)
O7–Cd1–O8	54.86(8)	N6Cd2N8	111.49(11)
N6-Cd2-O1	107.89(9)	N6-Cd2-O2#1	91.82(10)
N6-Cd2-O3	137.87(10)	N6Cd2O4	84.28(10)
N8-Cd2-O1	82.86(10)	N8-Cd2-O2#1	134.67(10)
N8-Cd2-O3	90.10(10)	N8-Cd2-O4	107.90(10)
O1-Cd2-O2#1	52.51(9)	O1–Cd2–O3	110.46(9)
O1-Cd2-O4	160.00(9)	O3-Cd2-O2#1	97.84(9)
O3Cd2O4	54.17(9)	O4Cd2O2#1	112.84(9)
Complex 6			
Hg1–Cl1	2.611(2)	Hg1–N2	2.163(3)
Hg2–Cl1	2.985(2)	Hg2–Cl2	2.340(2)
Cl1-Hg1-Cl1#1	100.17(7)	Cl1-Hg1-N2	102.95(10)
Cl1-Hg1-N2#1	98.87(10)	N2-Hg1-N2#1	145.72(12)
Cl1-Hg2-Cl2	90.64(4)	Cl1-Hg2-Cl2#2	89.37(4)
Cl1-Hg2-Cl1#2	180.00	Cl2-Hg2-Cl2#2	180.00

Symmetry transformations used to generate equivalent atoms for 1: #1 x, 1+y, z; #2 x, -1+y, z. for 2: #1 1-x, y, 1/2-z; #2 -x, y, 3/2-z. for 3: #1 1/2-x, 1/2-y, 1-z. for 4: #1 x, -1+y, z; #2 x, 1/2-y, 1/2+z. for 5: #1 4/3+x-y, 2/3+x, 5/3-z. for 6: #1 1-x, y, 1/2-z; #2 1-x, 3-y, -z.

			-	
D–H···A	<i>d</i> (D–H)	<i>d</i> (H···A)	<i>d</i> (D····A)	∠D–H…A
Complex 2				
O9–H9D…O4	0.85	2.03	2.727(3)	138
O10-H10C…O9#1	0.85	2.51	2.943(3)	112
O10-H10C…O10#1	0.85	2.53	3.249(4)	143
O10-H10D…O5	0.85	2.08	2.924(3)	174
O11-H11C…O6	0.85	1.90	2.745(3)	172
O11-H11D…O13	0.85	2.03	2.863(3)	164
O12–H12C…O2	0.85	2.15	2.812(3)	135
O12-H12D…O11	0.85	2.01	2.780(4)	151
O13–H13C…O14	0.85	1.87	2.714(3)	172
O13–H13D…O3	0.85	2.04	2.857(3)	160
O14–H14C…O8#2	0.85	2.08	2.785(3)	140
O15–H15D…O7#3	0.85	2.18	2.816(4)	131
O16–H16C…O1	0.85	1.92	2.758(3)	170
O16–H16D…O16#3	0.85	2.20	2.731(4)	120
Complex 3				
O3–H3C…O2#1	0.85	2.47	2.919(10)	114
O3–H3D…O1#2	0.85	2.08	2.864(10)	154
Complex 6 ^d				
O2-H2C…O1#1	0.85	2.05	2.677(6)	130

Table S2 Hydrogen bond distances (Å) and angles (°) for complexes 2, 3 and 6.

Symmetry transformations used to generate equivalent atoms for **2**: #1 1–*x*, 1–*y*, 1–*z*; #2 –*x*, –*y*, 1–*z*; #3 –*x*, 1–*y*, 1–*z*. for **3**: #1 1/2–*x*, -1/2+y, 1/2-z; #2 1/2+*x*, 1/2-y, 1/2+z. for **6**: #1 –*x*, 1–*y*, –*z*.