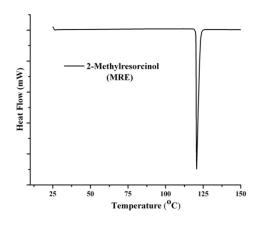
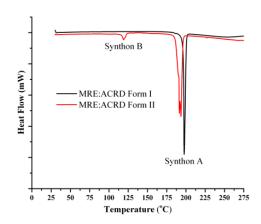
Electronic Supplementary Material (ESI) for CrystEngComm.
This journal is © The Royal Society of Chemistry 2015

Supporting information

Combinatorial crystal synthesis of ternary solids based on 2-methylresorcinol

Niyaz A. Mir[#], Ritesh Dubey[#], Srinu Tothadi[#], Gautam R. Desiraju* Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India


1. Characterization techniques


(a) Single crystal X-ray diffraction

Single crystal x-ray data for all crystals were collected on a *Rigaku Mercury 375/M CCD* (*XtaLAB mini*) diffractometer using graphite monochromator Mo-Kα radiation at 150 K and were processed with *Rigaku crystal clear software*.¹ Structure solution and refinement were performed using SHELX-2013² embedded in the WinGX suite.³ Refinement of coordinates and isotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. Mercury version 3.5 was used for molecular representations and packing diagrams.⁴ Acidic hydrogen atoms, especially in MRE, were located by difference Fourier maps while in other cases also at the calculated positions in the riding model.

- 1. CrystalClear 2.0, Rigaku Corporation, Tokyo, Japan.
- 2. G. M. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3-8.
- 3. L. J. Farrugia, *J. Appl. Crystallogr.* 1999, **32**, 837.
- 4. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453.

(b) Differential Scanning Calorimetry (DSC)

DSC profile of MRE (left). Thermal behaviour of 1:1 and 1:2 MRE:ACR crystal forms (right). Note the high temperature phase transition in metastable form II.

2. Crystallization Details:

- a) 2-Methylresorcinol (1): Colorless diffraction quality crystals were obtained from chloroform.
- b) 2-Methylresorcinol:2,2'-bipyridine (2): Liquid assisted grinding was performed on a 1:1 mixture of the precursor compounds with THF as a solvent. Colorless diffraction quality crystals were obtained in 2-3 days from benzene.
- c) 2-Methylresorcinol:4-phenylpyridine (3): An equimolar mixture of 2-methylresorcinol and 4-phenylpyridine was ground with 2-3 drops of THF (liquid assisted grinding). Colorless diffraction quality crystals were obtained from acetone or benzene after 2-3 days.
- d) 2-Methylresorcinol:1,10-phenanthroline (4): An equimolar mixture of 2-methylresorcinol and 1,10-phenanthroline was ground with 2-3 drops of THF. Colorless diffraction quality crystals were obtained from benzene or acetonitrile after 2-3 days.
- e) 2-Methylresorcinol:7,8-benzoquinoline (5): Both compounds were taken in 1:1 ratio and ground together with 2-3 drops of THF in a mortar and with a pestle for ten minutes. Purple colored diffraction quality crystals were obtained from benzene after 4 days.
- f) 2-Methylresorcinol:4-aminopyridine (6): An equimolar mixture of 2-methylresorcinol and 4-aminopyridine was ground in a mortar with a pestle for ten minutes with 2-3 drops of methanol. Light brown color diffraction quality crystals were obtained after 4 days from chloroform.
- g) 2-Methylresorcinol:4-dimethylaminopyridine (7): Both the compounds were taken in 1:1 ratio and ground together with 2-3 drops of methanol in a mortar with a pestle for ten minutes. Light brown color diffraction quality crystals were obtained after 4-5 days from chloroform.
- h) 2-Methylresorcinol:quinoxaline (8): Liquid assisted grinding was performed with THF as a solvent. Light brown color diffraction quality crystals were obtained after 4 days from benzene at 5°C.

- i) 2-Methylresorcinol:2,3-dimethylquinoxaline (9): An equimolar mixture of 2-methylresorcinol and 2,3-dimethylquinoxaline was ground in a mortar with a pestle for ten minutes with 2-3 drops of methanol. Light green color diffraction quality crystals were obtained from nitromethane.
- j) 2-Methylresorcinol:tetramethylpyrazine (10): 1:2 mixture of 2-methylresorcinol and tetramethylpyrazine was ground in a mortar with a pestle for ten minutes with 2-3 drops of THF. Colorless diffraction quality crystals were obtained after 4 days from benzene.
- k) 2-Methylresorcinol:1,2-bis(4-pyridyl)ethylene (11): Both compounds were taken in 1:1 ratio and ground together with 2-3 drops of THF in a mortar with a pestle for ten minutes. Orange color diffraction quality crystals were obtained from nitromethane.
- 1) 2-Methylresorcinol:1,2-bis(4-pyridyl)ethane (12): Both compounds were taken in 1:1 ratio and ground together with 2-3 drops of THF in a mortar with a pestle for 10-15 minutes. Colorless diffraction quality crystals of the 1:1 solid were obtained from nitromethane.
- m) 2-Methylresorcinol:4,4'-azopyridine (13): Both compounds were taken in 1:1 ratio and ground together with 2-3 drops of THF in a mortar with a pestle for 10-15 minutes. Red color diffraction quality crystals were obtained from benzene.
- n) 2-Methylresorcinol:phenazine (14): Both compounds were taken in 1:1 ratio and ground together with 2-3 drops of THF in a mortar with a pestle for 10-15 minutes. Green colored diffraction quality crystals were obtained from benzene.
- o) 2-Methylresorcinol:acridine-Form I (15): Both compounds were taken in 1:1 ratio and ground together with 2-3 drops of THF in a mortar with a pestle for 10-15 minutes. Yellow colored diffraction quality crystals were obtained after 4-5 days from benzene.
- p) 2-Methylresorcinol:acridine-Form II (16): Both compounds were taken in 1:1 ratio and ground together with 2-3 drops of THF in a mortar with a pestle for 10-15 minutes. Yellow colored diffraction quality crystals were obtained after 4 days from ethanol. Similar crystals could also be obtained by sublimation within 5 to 6 hours of a finely ground 1:2 stoichiometric mixture.
- q) 2-Methylresorcinol:4-dimethylaminopyridine:Phenazine (17): An equimolar mixture of 2-methylresorcinol, 4-dimethylaminopyridine and phenazine was ground in a mortar with

- a pestle for ten minutes with 2-3 drops of THF. Green colored diffraction quality crystals were obtained after 5 days from nitromethane.
- r) 2-Methylresorcinol:4-dimethylaminopyridine:tetramethylpyrazine (18): An equimolar mixture of 2-methylresorcinol, 4-dimethylaminopyridine and tetramethylpyrazine was ground in a mortar with a pestle for ten minutes with 2-3 drops of THF. Colorless diffraction quality crystals were obtained after 5 days from a 1:1 solvent mixture of nitromethane and benzene.
- s) 2-Methylresorcinol:4-phenylpyridine:tetramethylpyrazine (19): An equimolar mixture of 2-methylresorcinol, 4-phenylpyridine and tetramethylpyrazine was ground in a mortar with a pestle for ten minutes with 2-3 drops of THF. Colorless diffraction quality crystals were obtained after 5 days from nitromethane.
- t) 2-Methylresorcinol:4-dimethylaminopyridine:2,3-dimethylquinoxaline (20): An equimolar mixture of 2-methylresorcinol, 4-dimethylaminopyridine and 2,3-dimethylquinoxaline was ground in a mortar with a pestle for ten minutes with 2-3 drops of THF. Colorless block shaped crystals were obtained after 4 days from nitromethane.
- u) 2-Methylresorcinol: 1,10-phenanthroline: 4,4'-bipyridine (21): An equimolar mixture of 2-methylresorcinol, 1,10-phenanthroline and 4,4'-bipyridine was ground in a mortar and pestle for ten minutes with 2-3 drops of THF. Colorless block shaped crystals were obtained after 5 days from nitromethane.
- v) 2-Methylresorcinol: 1,10-phenanthroline: 4-phenylpyridine (22): An equimolar mixture of 2-methylresorcinol, 1,10-phenanthroline and 4-phenylpyridine was ground in a mortar with a pestle for ten minutes with 2-3 drops of THF. Colorless block shaped crystals were obtained after 4 days from nitromethane.

3. Unsuccessful experimental efforts for the crystal synthesis of ternary solids:

	Compounds	Ratio	Crystallizing medium	Result
1	MRE: PHE:ACR	1:1:1	Chloroform	Binary (MRE:PHE)
2	MRE: PHE:ACR	1:1:1	Ethyl acetate	Binary (MRE:PHE)
3	MRE: PHE:ACR	2:1:1	Ethanol	Binary (MRE:PHE)
4	MRE: PHE:4PP	1:1:1	Nitromethane	Binary (MRE:PHE)
5	MRE: PHE:4PP	2:1:1	Nitromethane	Binary (MRE:PHE)

				Binary (MRE:4PP)
6	MRE: PHE:110PHE	2:1:1	Nitromethane	Binary (MRE:PHE)
7	MRE: PHE:4AP	1:1:1	Acetone	Binary (MRE:4AP)
8	MRE: PHE:4AP	1:1:1	Ethanol	Binary (MRE:4AP)
9	MRE: 110PHE:BZQL	1:1:1	Nitromethane	Binary (MRE:BZQL)
10	MRE: 110PHE:BZQL	1:1:1	Benzene	Binary (MRE:BZQL)
11	MRE:110PHE:4BP	1:1:1	Benzene	Binary (MRE:4BP)
12	MRE:110PHE:4PP	1:1:1	CHCl ₃	Binary (MRE:110PHE)
13	MRE:110PHE:4PP	1:1:1	Benzene	Binary (MRE:110PHE)
14	MRE:110PHE:4DMAP	1:1:1	Nitromethane	Binary (MRE:4DMAP)
15	MRE:110PHE:4DMAP	1:1:1	EtOH	Binary (MRE:4DMAP)
16	MRE:110PHE:4AP	1:1:1	Acetonitrile	Binary (MRE:110PHE)
17	MRE:110PHE:4AP	1:1:1	Nitromethane	Binary (MRE:110PHE)
18	MRE:110PHE:4AP	1:1:1	Methanol	Binary (MRE:110PHE)
19	MRE: ACR:4PP	1:1:1	Nitromethane	Binary (MRE:ACR form I)
20	MRE: ACR:4PP	1:1:1	Nitromethane: Chloroform	Binary (MRE:ACR Form I)
21	MRE: ACR:4DMAP	1:1:1	Nitromethane	Binary (MRE:ACR form I)
22	MRE: ACR:4DMAP	2:1:1	Ethanol	Binary (MRE:ACR form II)
23	MRE: ACR:4DMAP	2:1:1	Nitromethane	Binary (MRE:4DMAP)
24	MRE: BZQL:4BAP	1:1:1	Nitromethane	Binary (MRE:4BP)
25	MRE: BZQL:4BAP	1:1:1	Benzene	Binary (MRE:4BP)

4. Crystallographic information

Compound	1	2	3	4	5	6
CCDC No.	1060872	1060873	1060874	1060875	1060876	1060877
Molecular Formula	$C_7H_8O_2$	$C_{17}H_{16}N_2O_2$	$C_{18}H_{17}N_1O_2$	$C_{19}H_{16}N_2O_2$	$C_{20}H_{17}N_1O_2$	$C_{12}H_{14}N_2O_2$
Formula Weight	124.13	280.32	279.33	304.34	303.35	218.25
Crystal System	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Monoclinic	Monoclinic
Space Group	$P2_{1}/n$	$P2_1/n$	Pbca	$P2_1/n$	$P2_1/n$	$P2_1/n$
a (Å)	9.117(6)	7.6951(10)	11.3265(10)	7.900(4)	7.842(2)	7.986(5)
b (Å)	11.604(8)	20.299(2)	12.4430(11)	22.159(11)	21.894(4)	16.748(10)
c (Å)	18.108(12)	9.089(1)	21.1449(19)	8.964(5)	9.260(3)	8.276(5)
α (°)	90	90	90	90	90	90

β (°)	92.885(8)	92.677(6)	90	106.540(5)	106.278(12)	90.474(8)
γ (°)	90	90	90	90	90	90
$V(\mathring{A}^3)$	1913.0(2)	1418.2(3)	2980.1(5)	1504.3(14)	1526.1(7)	1106.9(12)
$ ho_{ m calc}$ (g/cm ³)	1.293	1.313	1.245	1.344	1.320	1.310
F(000)	792	592	1184	640	640	464
μ. (mm ⁻¹)	0.094	0.087	0.081	0.088	0.083	0.091
T (K)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Total Refins.	19457	14611	29717	15128	16018	11480
Unique Refins.	4409	3239	3410	3448	3507	2534
Completeness (%)	99.8	99.8	99.8	99.6	99.8	99.8
$\mathbf{R}_{\mathrm{int}}$	0.081	0.099	0.079	0.093	0.165	0.092
$R_1(F^2)$	0.0524	0.0522	0.0514	0.0484	0.0682	0.0488
$wR_2(F^2)$	0.1589	0.1697	0.1230	0.1492	0.2026	0.1559
GooF	1.14	1.11	1.16	1.10	1.15	1.13
2θ	54	54	54	54	54	54

Compound	7	8	9	10	11	12
CCDC No.	1060878	1060879	1060880	1060881	1060882	1060883
Molecular Formula	$C_{14}H_{18}N_2O_2$	$C_{22}H_{22}N_2O_4$	$C_{17}H_{18}N_2O_2$	$C_{15}H_{20}N_2O_2$	$C_{19}H_{18}N_2O_2$	$C_{19}H_{20}N_2O_2$
Formula Weight	246.30	378.42	282.33	260.33	306.35	308.37
Crystal System	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Monoclinic
Space Group	$P2_{1}/n$	Cc	$P2_{1}/n$	$Pbc2_1$	$P2_{1}/n$	C2/c
a (Å)	7.718(5)	20.478(4)	7.821(3)	9.0198(15)	17.8576(19)	8.139(2)
b (Å)	18.754(11)	7.1225(13)	22.849(8)	10.7769(18)	9.9354(10)	12.331(4)
c (Å)	9.201(6)	12.930(3)	8.387(3)	14.653(2)	18.732(2)	16.793(5)
α (°)	90	90.00	90.00	90	90	90

β (°)	96.278(8)	94.578(9)	91.286(15)	90	105.457(4)	98.031(13)
γ (°)	90	90.00	90.00	90	90	90
$V(\mathring{A}^3)$	1323.8(14)	1879.9(7)	1498.4(9)	1424.4(4)	3203.3(6)	1668.9(8)
$ ho_{ m calc}$ (g/cm ³)	1.236	1.337	1.252	1.214	1.270	1.227
F(000)	528	800.0	600.0	560	1296	656
μ. (mm ⁻¹)	0.084	0.093	0.083	0.081	0.083	0.080
T (K)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Total Refins.	12859	9645	13123	14166	33416	7668
Unique Reflns.	3027	4273	3319	3257	7382	1915
Completeness (%)	99.7	99.0	97.3	100	99.9	99.1
$\mathbf{R}_{\mathrm{int}}$	0.111	0.100	0.113	0.079	0.112	0.109
$R_1(F^2)$	0.0540	0.0652	0.0546	0.056	0.0796	0.0662
$WR_2(F^2)$	0.1560	0.1948	0.1691	0.1282	0.2461	0.2119
GooF	1.09	1.06	1.10	1.02	1.12	1.09
20	54	54	54	54	54	54

Compound	13	14	15	16	17	18
CCDC No.	1060884	1060885	1060886	1060887	1060888	1060889
Molecular Formula	$C_{17}H_{16}N_4O_2$	$C_{19}H_{16}N_2O_2$	$C_{20}H_{17}N_1O_2$	$C_{33}H_{26}N_2O_2$	$C_{33}H_{34}N_4O_4$	$C_{36}H_{48}N_6O_4$
Formula Weight	308.34	304.34	303.35	482.56	550.64	628.80
Crystal System	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic	Triclinic
Space Group	$P2_{1}/c$	$P2_1/n$	$P2_{1}/n$	$P\Box$	$P\Box$	$P\Box$
a (Å)	18.468(3)	7.656(7)	7.742(4)	9.097(17)	7.734(5)	7.7071(19)
b (Å)	7.2386(11)	22.46(2)	22.159(11)	12.117(19)	9.196(6)	8.9632(19)
c (Å)	11.831(2)	8.940(8)	9.100(5)	12.53(2)	20.844(14)	12.790(2)
α (°)	90	90	90	73.19(5)	101.370(15)	78.86(4)

β (°)	91.866(10)	91.516(14)	93.630(5)	81.98(5)	94.21(3)	79.56(4)
γ (°)	90	90	90	75.42(5)	96.022(17)	83.81(4)
V (ų)	1580.8(4)	1537.0(2)	1558.0(14)	1276(4)	1438.6(16)	850.1(3)
$ ho_{ m calc}$ (g/cm ³)	1.296	1.315	1.293	1.256	1.271	1.228
F(000)	648	640	640	508	584	338
μ. (mm ⁻¹)	0.088	0.087	0.083	0.078	0.085	0.081
T (K)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Total Refins.	16108	15342	15898	13607	15403	8736
Unique Refins.	3628	3506	3558	5860	6586	3961
Completeness (%)	99.4	99.7	99.8	98.3	99.4	97.9
$\mathbf{R}_{\mathrm{int}}$	0.095	0.073	0.052	0.167	0.084	0.093
$R_1(F^2)$	0.0663	0.0721	0.0503	0.1231	0.0729	0.0632
$wR_2(F^2)$	0.2005	0.2240	0.1623	0.3809	0.2307	0.2029
GooF	1.06	1.15	1.16	1.00	1.07	0.98
2θ	54	54	54	54	54	54

Compound	19	20	21	22
CCDC No.	1060890	1060891	1060870	1060871
Molecular Formula	$C_{22}H_{23}N_2O_2$	$C_{24}H_{28}N_4O_2$	$C_{29}H_{24}N_4O_2$	$C_{30}H_{25}N_3O_2$
Formula Weight	347.42	404.50	460.52	459.53
Crystal System	Triclinic	Triclinic	Monoclinic	Monoclinic
Space Group	$P\Box$	$P\Box$	$P2_{1}/c$	$P2_{1}/c$
a (Å)	7.287(6)	7.635(5)	16.177(3)	16.337(13)
b (Å)	9.179(7)	9.055(8)	7.5746(13)	7.599(6)
c (Å)	14.419(11)	17.237(13)	19.698(4)	19.883(15)
α (°)	105.567(19)	96.22(3)	90	90

β (°)	90.12(3)	94.09(2)	107.485(9)	107.782(9)
γ (°)	93.375(19)	113.734(15)	90	90
V (Å ³)	927.3(13)	1075.8(14)	2302.2(8)	2350.4(3)
$ ho_{\rm calc}$ (g/cm ³)	1.244	1.249	1.329	1.299
F(000)	370.0	432.0	968.0	968.0
μ. (mm ⁻¹)	0.080	0.081	0.085	0.082
T (K)	150(2)	150(2)	150(2)	150(2)
λ (Å)	0.71073	0.71073	0.71073	0.71073
Total Reflns.	9785	10143	23137	24193
Unique Reflns.	4244	4226	5298	5409
ompleteness (%)	98.8	99.6	99.2	99.9
$\mathbf{R}_{\mathrm{int}}$	0.094	0.113	0.104	0.158
$R_1(F^2)$	0.0755	0.0586	0.0609	0.0974
$wR_2(F^2)$	0.2921	0.1865	0.1852	0.2727
GooF	0.95	1.02	1.21	1.14
2θ	54	52	54	54