Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2015

SUPPORTING INFORMATION

In situ variable-temperature single crystal X-ray diffraction studies of the single-crystal-to-single crystal dehydration and rehydration of a mixed-ligand 2D zinc metal-organic framework using trimesate and 4,4-dipyridyl-N,N'dioxide as ligands

Tayyibah Tahier and Clive L. Oliver*

Centre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa

E-mail: <u>Clive.Oliver@uct.ac.za</u> (Dr. Clive L. Oliver)

*Corresponding author:

Clive L. Oliver

Centre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

E-mail: clive.oliver@uct.ac.za

Fax: +27 21 6505195

Phone: +27 21 6503830

Table S1 Crystal data for 1 at 104 K, 298 K, 323 K, 373 K on the same crystal, whilst 298Kafter heated to 373 K and at 298 K after exposed to air for 1 day is on a different crystal

					298 K (after	298 K (1 day
	104 K	298K	323K	373 K	heated to	after heated
					373 K)	to 373 K)
				C U NO	C H NO	C H N O
Empirical	$C_{57}H_{60}N_6O_{55}S$	$C_{57}H_{54}N_6O_{52.2}$	$C_{57}H_{54}N_6O_{48.9}$	$C_{57}H_{42}N_6O_{42}$	$C_{57}H_{42}N_6O_{42}$	$C_{57}H_{42}N_6O_{50}$
formula	₃ Zn ₉	$_{1}S_{3}Zn_{9}$	$_{6}S_{3}Zn_{9}$	S ₃ Zn ₉	S ₃ Zn ₉	$_{.95}S_{3}Zn_{9}$
Formula weight	2393.62	2326.82	2290.93	2167.47	2167.47	2310.67
	104	200	222	272(2)	209(2)	200
Temperature/K	104	298	323	3/3(2)	298(2)	298
Crystal system	trigonal	trigonal	trigonal	trigonal	trigonal	trigonal
Space group	<i>R</i> 3	R3	<i>R</i> 3	<i>R</i> 3	<i>R</i> 3	R 3
$\alpha/\lambda \alpha/2$	19 916(4) 00	18.798(19),	18.795(18),	18.889(19),	18.723(5),	18.815(5),
a/A, u/	18.810(4), 90	90	90	90	90	90
		18 708(10)	18 795(18)	18 889(19)	18 723(5)	18 815(5)
b/Å, β/°	18.816(4), 90	90	90	90	90	90
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$c/\lambda x/^{\circ}$	21 441(5)	21 57(2) 120	21 47(2) 120	21.67(2),	21.353(6),	21.425(6).
0/11, //	120	21.57(2), 120	21.47(2), 120	120	120	120
Volume/Å ³	6574(3)	6602(15)	6568(14)	6695(15)	6483(4)	6568(4)
Z	3	3	3	3	3	3
$\rho_{calc}g/cm^3$	1.814	1.756	1.738	1.613	1.666	1.753
/ 1	0 500	2 501	2 501	2.522	2 (15	2.504
μ/mm^{-1}	2.598	2.581	2.591	2.532	2.615	2.394
F(000)	3606	3497	3443	3240.0	3240	3455
	0.455 0.044			0.314 ×	0.40.200	0.40.200
Crystal size/mm ³	$0.4/5 \times 0.344$	0.475 × 0.344	0.475 × 0.344	0.344 ×	0.4 × 0.388	0.4×0.388
	× 0.317	× 0.317	× 0.317	0.475	× 0.351	× 0.351
XX7 1 (1/8	0.71072	0.71072	0.71072	0.71072	0.71072	0.71072
wavelength/A	0./10/3	0./10/3	0./10/3	0./10/3	0./10/3	0./10/3
2θ range for data	4.33 to	4.334 to	2 14 40 (1 01	3.12 to	4.568 to	214 + (14)
collection/°	61.336	61.748	3.14 to 61.81	60.796	61.424	3.14 to 61.4
	0.5 . 1 . 5 .	A. . 1 A. (A. . 1 A.		26 -1 - 25	25 < 1 < 20
Index reserve	$-25 \le h \le 25, -26 \le 10$	$-25 \le h \le 26, -1 \le 20$	$ -25 \le h \le 26, -1000000000000000000000000000000000000$	$-22 \ge n \le 20$,	$-20 \ge n \le 23$,	$-23 \ge n \le 20$,
index ranges	$20 \le K \le 19, -$ 20 < 1 < 20	$20 \le K \le 20, -$ 20 < 1 < 21	$20 \le K \le 21, -$ 20 < 1 < 21	$-24 \ge K \le 23$,	$-20 \ge K \le 23$,	$-23 \ge K \le 26$,
	$29 \ge 1 \ge 30$	<u> </u>	27 21 2 31	$-29 \le 1 \le 30$	$-23 \le 1 \le 30$	-30 ≤ 1 ≤ 23

Reflections collected	19838	20095	20037	13265	10863	18950
Independent reflections	$7900 [R_{int} = 0.0233, R_{sigma} = 0.0529]$	$7886 [R_{int} = 0.0301, R_{sigma} = 0.0681]$	7879 [$R_{int} =$ 0.0383, $R_{sigma} =$ 0.0661]	$7012 [R_{int} = 0.0476, R_{sigma} = 0.1026]$	7156 [$R_{int} =$ 0.0403, $R_{sigma} =$ 0.1511]	$12155 [R_{int} = 0.0306, R_{sigma} = 0.0982]$
Data/restraints/pa rameters	7900/2/408	7886/1/390	7879/1/378	7012/1/354	7156/1/354	12155/1/384
Goodness-of-fit on F ²	1.071	1.081	1.066	1.024	0.911	1.099
Final R indexes [I>=2σ (I)]	$R_1 = 0.0383,$ $wR_2 = 0.1085$	$R_1 = 0.0519,$ $wR_2 = 0.1465$	$R_1 = 0.0482,$ $wR_2 = 0.1347$	$R_1 = 0.0508, \\ wR_2 = \\ 0.1377$	$R_1 = 0.0556, \\ wR_2 = \\ 0.1379$	$R_1 = 0.0610,$ $wR_2 =$ 0.1578
Final R indexes [all data]	$R_1 = 0.0394,$ $wR_2 = 0.1090$	$R_1 = 0.0608,$ $wR_2 = 0.1524$	$R_1 = 0.0539,$ $wR_2 = 0.1372$	$R_1 = 0.0635, \\ wR_2 = \\ 0.1473$	$R_1 = 0.0880,$ wR2 = 0.1590	$R_1 = 0.0738,$ $wR_2 =$ 0.1654
Largest diff. peak/hole / e Å ⁻³	2.49/-0.69	1.22/-0.67	1.00/-0.89	0.97/-0.51	0.92/-0.70	0.83/-0.85
Flack parameter	0.001(5)	0.057(6)	0.016(7)	-0.002(11)	0.001(19)	0.337(11)
Refined minor twin component fraction	0.180(2)	0.186(1)	0.185(3)	0.188(1)	0.206(4)	0.262(1)

Table S2 Bond lengths [Å] for 1 at 104 K, 298 K, 323 K, 373 K on the same crystal, whilst298K after heated to 373 K and at 298 K after exposed to air for 1 day is on a different crystal

Bor	nded	104 K	298 K	323 K	373 K	298 K	298K
ato	oms					(after	after 1
						heated to	day
						373 K)	exposure
7.01				(-)			to air
Zn01	09	2.065(4)	2.069(6)	2.077(5)	2.076(6)	2.050(6)	2.069(5)
Zn01	03	2.134(4)	2.143(6)	2.152(5)	2.200(6)	2.171(7)	2.159(6)
Zn01	02	2.037(4)	2.025(7)	2.027(6)	2.072(6)	2.059(7)	2.028(6)
Zn01	07	2.097(4)	2.093(7)	2.089(5)	2.097(5)	2.075(6)	2.085(7)
Zn01	O1S	2.158(4)	2.141(7)	2.142(6)	2.162(6)	2.141(6)	2.164(7)
Zn01	O3W	2.093(4)	2.089(7)	2.097(6)	2.076(6)	2.053(6)	2.100(6)
Zn02	O1W	2.091(5)	2.115(8)	2.164(8)	-	-	2.154(8)
Zn02	01	2.056(5)	2.037(7)	2.015(6)	1.948(7)	1.940(8)	2.032(7)
Zn02	O2W	2.104(5)	2.084(8)	2.079(7)	-	-	2.069(8)
Zn02	O3S	2.069(4)	2.072(7)	2.053(7)	2.013(8)	2.001(8)	2.089(7)
Zn02	06	2.179(5)	2.166(8)	2.142(7)	1.979(7)	1.947(8)	2.158(8)
Zn03	09	1.978(4)	1.968(5)	1.972(5)	1.995(6)	1.962(6)	1.964(6)
Zn03	O4	1.939(5)	1.942(7)	1.920(6)	1.937(7)	1.939(8)	1.937(7)
Zn03	O2S	1.990(5)	1.970(7)	1.965(7)	1.998(7)	1.979(7)	1.983(7)
Zn03	05	1.940(6)	1.928(8)	1.909(7)	1.937(7)	1.899(7)	1.922(7)
S1	O4S	1.465(4)	1.457(7)	1.466(7)	1.448(7)	1.439(7)	1.454(8)
S1	O1S	1.473(4)	1.469(7)	1.471(7)	1.486(6)	1.469(6)	1.468(7)
S1	O3S	1.484(5)	1.468(7)	1.471(7)	1.479(9)	1.468(9)	1.464(7)
S1	O2S	1.487(5)	1.481(8)	1.483(7)	1.485(8)	1.473(9)	1.484(8)
03	Zn01	2.134(4)	2.143(6)	2.152(5)	2.200(6)	2.171(7)	2.159(6)
03	C8	1.253(7)	1.246(11)	1.254(9)	1.242(11)	1.224(12)	1.260(10)
02	C7	1.246(7)	1.246(11)	1.240(10)	1.237(10)	1.242(12)	1.244(11)
07	N1	1.335(6)	1.348(10)	1.350(9)	1.338(9)	1.325(9)	1.334(10)
01	C7	1.261(7)	1.248(11)	1.243(10)	1.281(11)	1.244(12)	1.246(11)
08	N2	1.325(6)	1.316(10)	1.311(10)	1.324(10)	1.297(9)	1.322(10)
04	Zn03	1.939(5)	1.942(7)	1.920(6)	1.937(7)	1.939(8)	1.937(7)
04	C8	1.275(7)	1.265(11)	1.265(11)	1.271(11)	1.257(11)	1.279(10)
06	Zn02	2.179(5)	2.166(7)	2.166(7)	1.979(7)	1.947(8)	2.158(7)
06	C9	1.231(8)	1.238(12)	1.238(12)	1.262(14)	1.261(15)	1.239(12)
N2	C17	1.357(8)	1.337(13)	1.337(13)	1.316(12)	1.332(12)	1.368(13)
N2	C18	1.352(8)	1.330(13)	1.330(13)	1.376(12)	1.354(12)	1.329(13)
N1	C10	1.360(8)	1.342(13)	1.342(13)	1.365(12)	1.349(12)	1.351(13)
N1	C14	1.352(8)	1.342(13)	1.342(13)	1.357(12)	1.336(12)	1.334(14)
C11	C10	1.381(8)	1.361(14)	1.361(14)	1.375(13)	1.366(13)	1.356(14)
C11	C12	1.406(8)	1.377(14)	1.377(14)	1.416(12)	1.397(13)	1.389(14)
C1	C2	1.394(8)	1.395(11)	1.395(11)	1.394(12)	1.381(13)	1.398(11)

C1	C6	1.391(8)	1.387(11)	1.387(11)	1.384(11)	1.382(12)	1.394(11)
C1	C7	1.509(7)	1.496(11)	1.496(11)	1.520(11)	1.519(12)	1.504(11)
C16	C15	1.409(8)	1.385(13)	1.385(13)	1.392(12)	1.365(13)	1.394(13)
C16	C17	1.386(8)	1.390(14)	1.390(14)	1.389(13)	1.387(14)	1.372(14)
C3	C2	1.387(8)	1.384(11)	1.384(11)	1.389(11)	1.399(13)	1.400(11)
C3	C4	1.390(8)	1.395(11)	1.395(11)	1.416(11)	1.397(13)	1.395(11)
C3	C8	1.510(8)	1.499(11)	1.499(11)	1.518(12)	1.504(14)	1.479(11)
C15	C12	1.474(8)	1.478(12)	1.478(12)	1.490(11)	1.488(11)	1.496(13)
C15	C19	1.394(8)	1.387(15)	1.387(15)	1.384(13)	1.364(14)	1.391(14)
C6	C5	1.395(9)	1.375(12)	1.375(12)	1.396(13)	1.378(13)	1.366(12)
05	Zn03	1.940(6)	1.928(7)	1.928(7)	1.937(7)	1.899(7)	1.922(7)
05	C9	1.282(8)	1.271(13)	1.271(13)	1.291(12)	1.271(14)	1.283(12)
C12	C13	1.411(8)	1.399(13)	1.399(13)	1.407(12)	1.389(13)	1.395(14)
C13	C14	1.376(8)	1.378(14)	1.378(14)	1.366(13)	1.360(13)	1.376(14)
C4	C5	1.384(8)	1.368(12)	1.368(12)	1.394(13)	1.387(13)	1.383(12)
C19	C18	1.373(8)	1.367(14)	1.367(14)	1.382(13)	1.374(14)	1.360(14)
C5	C9	1.492(8)	1.498(12)	1.498(12)	1.510(11)	1.499(12)	1.496(12)
Zn02	09	2.079(4)	2.067(6)	2.056(5)	1.989(6)	1.981(6)	2.061(6)
Zn02*	Zn03*	3.219(1)	3.219(1)	3.215(1)	3.137(4)	3.101(2)	3.219(2)

* These are non-bonded distances

Figure S1. DSC and TGA graphs of 1

Figure S2. TGA graphs for rehydration experiment: (a) as-synthesized MOF (b) the immediate reheat and (c) after 24 hours of being exposed to a humid atmosphere

Figure S3. FT-IR spectra for the (a) 2D MOF (b) trimesic acid and (c) 4,4'bipyridine-N,N'-dioxide

