Electronic Supplementary Information

Rapid microwave assisted synthesis of nearly monodisperse aqueous CuInS₂/ZnS nanocrystals

Yatin J. Mange,^a Melissa R. Dewi,^a Thomas J. Macdonald,^{ab} William M. Skinner^a and Thomas Nann^{ac*}

 ^a Ian Wark Research Institute, University of South Australia, Mawson Lakes, 5095 SA, Australia, E-mail:

 ^b Department of Chemistry, University College London, London, United Kingdom
 ^c MacDiarmid Institute of Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand Corresponding e-mail: <u>thomas.nann@vuw.ac.nz</u>

Materials:

The following chemicals were purchased and used as received without further purification. Indium(III) chloride (InCl₃) 98%, copper (I) acetate (Cu(Ac)₂) 98%, thioglycolic acid (TGA) 98%, sodium sulfide (Na₂S) 98%, zinc acetate (Zn(Ac)₂) 99%, were all purchased from Sigma-Aldrich. TiO₂ P25 nanoparticles was supplied by EVONIK (Degussa) Industries. 1.5 cm × 1.5 cm ITO coated glass electrodes were supplied by Prazisions Glass & Optik GmbH.

TiO₂ Paste formation:

2 mL of DI water and 50 μ L of acetic acid was taken in a mortal and pestle. To this 2g of TiO2 particles (P25, Degussa) was added and crushed to form a smooth paste. Following this 50 μ L of triton x-100 was added as a surfactant to prevent any aggregation of particles suspended in the paste.

Instrumentation:

Photoluminescence spectroscopy and quantum yield measurements were carried out on an Edinburgh Instruments Fluorometer FLS980. XPS measurements were undertaken using monochromatised Al K α X-rays (300 W) in a Kratos Axis-Ultra spectrometer (10 eV analyzer pass energy). The analysis spot size was ~300 × 700 μ m. UV-Visible spectroscopy measurements were carried out on an Agilent Cary 300 spectrometer. Transmission electron microscopy was carried out on a JEOL JEM-2100F with an acceleration voltage of 200 kV. Dynamic Light Scattering (DLS) measurement was carried out at 25 °C by using a Zetasizer-Nano instrument from Malvern, UK. X-ray diffraction was carried out using a Scintag ARL X'tra diffractometer and Cu K α radiation.

Fig. S1. Emission spectra of CuInS₂-Core

Fig. S2. Absorption spectra of $CuInS_2$ -Core (black) and $CuInS_2/ZnS$ NCs (red)

Fig. S3. Tauc plot for band gap estimation of $\mbox{CuInS}_2/\mbox{ZnS}$ NCs

Fig. S4. Particle size distribution histogram of $CuInS_2/ZnS$ NCs obtained from TEM micrographs.

Fig. S5. DLS in r.nm for $CuInS_2/ZnS NCs$

Fig S6. 5 nm $CuInS_2/ZnS$ NC showing the lattice fringes