Solvent diffusion through a non-porous crystal 'caught in the act' and related single-crystal-to-single-crystal transformations in a cationic dinuclear Ag(I) complex with 1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and BF_4^- as counterion

Jo Alen, Luc Van Meervelt, Wim Dehaen and Liliana Dobrzańska

Supplementary Data

Preparative and crystallographic details for [Ag₂(**bitmb**)₂](SbF₆)₂: crystals of [Ag₂(bitmb)₂](SbF₆)₂·2CH₃CN (see L. Dobrzańska, *CrystEngComm*, 2011, **13**, 2303 – 2309) were heated for 40 minutes at 100°C, affording the solvent-free form.

Table S1 Crystal data and details of the refinement parameters for the crystal structures of [Ag₂(bitmb)₂](SbF₆)₂

Chemical formula	$C_{34}H_{40}N_8Ag_2 \cdot 2(SbF_6)$
Formula Mass	1247.98
Crystal system	Triclinic
<i>a</i> /Å	8.9070(4)
b/Å	9.6544(4)
c/Å	12.2203(5)
α/°	92.845(2)
β/°	103.284(2)
γ/°	101.842(2)
Unit cell volume/Å ³	995.78(7)
Temperature/K	100(2)
Space group	Ρ1
No. of formula units per unit cell, Z	1
Radiation type	СиКα
Absorption coefficient, μ/mm^{-1}	19.266
No. of reflections measured	9080
No. of independent reflections	3531
R _{int}	0.0381
Final R_1 values ($I > 2\sigma(I)$)	0.0388
Final $wR_2(F^2)$ values ($l > 2\sigma(l)$)	0.0895
Final R ₁ values (all data)	0.0471
Final $wR_2(F^2)$ values (all data)	0.0931
Goodness of fit on F^2	1.061

^a $R_1 = \sum \| \mathbf{F}_0 \| - \| \mathbf{F}_c \| / \sum \| \mathbf{F}_0 \|$.

^bw $R_2 = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}.$

Table S2 Effect of the counterions on the shape of the formed metallocycles

Compound	Counterion geometry	Counter ion Volume/ Å ³	Metal-metal distance in the metallocycle/ Å	Distance between the least- squares planes of mesitylene rings/centroid– centroid distance between these rings in the metallocycle/Å	N1–Ag1– N19 [#] /°
$[Ag_2(bitmb)_2](SbF_6)_2$	Octahedral	89	8.07	10.35/10.63	178.8(2)
$[Ag_2(bitmb)_2](PF_6)_2$	Octahedral	71	7.83	10.39/10.62	179.0(2)
$[Ag_2(bitmb)_2](BF_4)_2$	Tetrahedral	54	7.17	10.75/11.02	174.1(2)
$[Ag_2(bitmb)_2](NO_3)_2$	Trigonal	40	6.68	10.93/11.32	169.0(2)

Table S3 Unit cell parameters for 5

Compound	5	
reference		
a/Ă	15.381(2)	
b/Å	11.818(1)	
c/Å	21.410(8)	
α/°	90.0	
β/°	107.53(2)	
γ/°	90.0	

Fig. S1 Overlay of metallocycle 1 (grey) with the corresponding one from 4c (red); r.m.s. deviation of 0.1437 Å.