SUPPLEMENTARY INFORMATION

Preparation and Structure of NHC Hg(II) and Ag(I) Macrometallocycles

Qing-Xiang Liu,* Rui Liu, Yue Ding, Xiao-Jun Zhao, Zhi-Xiang Zhao, Wei Zhang

Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China.

* Corresponding author, E-mail: tjnulqx@163.com

Contents

- 1. CCDC numbers for complexes 1-7.
- 2. The slip angles and the bond distances of O(2)-metal for complexes 1-7 (Table S1).
- 3. The dihedral angles of complexes 1-7 (Table S2).
- 4. H-Bonding geometry for complexes 1, 2 and 4-7 (Table S3).
- 5. The distances of π - π interactions, and the distances and angles of C-H··· π contacts for complexes 2, 3 and 6 (Table S4).
- 6. Electrochemical data for precursors $L^{1}H_{2} \cdot (PF_{6})_{2}$, $L^{3}H_{2} \cdot (PF_{6})_{2}$ and $L^{4}H_{2} \cdot (PF_{6})_{2}$, and complexes 5-7 (Table S5).
- 7. Cyclic voltammograms of precursors $L^1H_2 \cdot (PF_6)_2$, $L^3H_2 \cdot (PF_6)_2$ and $L^4H_2 \cdot (PF_6)_2$ (Fig. S1).
- The ¹H NMR and ¹³C NMR spectra of all intermediates, precursors and complexes
 1-7 (Fig. S2- Fig. S27).

1. CCDC numbers for complexes 1-7

CCDC 1012248-1012254 contains the supplementary crystallographic data for complexes complexes 1-7. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: <u>deposit@ccdc.cam.ac.uk</u>.

2. The slip angles and the bond distances of O(2)-metal for complexes 1-7

Table S1 The slip angles between O(2) and anthraquinone plane, and the bonddistances of O(2)-Metal for 1-7

Complexes	slip angles (°)	O(2)-metal (Å)
1	9.9(8)	2.942(8)
2	16.5(1)	2.845(6)
3	15.6(7)	2.827(6)
4	12.9(9)	2.879(8)
5	16.5(9)	2.954(1)
6	13.7(3)	3.042(6)
7	11.8(6)	2.632(4)

3. The dihedral angles of complexes 1-7

Table S2 In the same ligand of **1-7**, the dihedral angles (°) between anthraquinone plane and two imidazole (or benzimidazole) rings (A), the dihedral angles (°) between benzene (or pyridine) rings and the adjacent imidazole (or benzimidazole) rings (B), and the dihedral angles between two imidazole (or benzimidazole) rings (C)

Complexes	А	В	С
1	70.3(8), 70.9(3),	79.5(5), 79.9(8),	20.7(1)
1	73.7(7), 77.8(7)	82.4(0), 88.9(0)	20.7(1))
2	53.2(2), 70.0(8)	75.1(7), 77.6(3)	17.6(2)
3	77.4(7), 84.1(6)	_	21.1(7)

4	60.4(5), 64.3(8)	60.7(7), 73.4(3)	7.1(3)
5	74.4(6), 85.6(5)	_	12.0(4)
6	59.9(1), 85.4(3)	_	39.8(7)
7	60.1(1), 64.6(5)	82.9(7), 83.7(6)	7.7(1)

4. H-Bonding geometry for complexes 1, 2 and 4-7.

Table S3 H-Bonding Geometry (Å, °) for complexes 1, 2 and 4-7

	D-H····A	D-H	Н…А	D…A	D-H…A
1	$C(12)$ -H $(12B)$ ····Br $(1)^i$	0.990(0)	2.862(4)	3.763(9)	151.7(6)
I	$C(22)-H(22)\cdots Br (8)^{i}$	0.950(0)	2.832(8)	3.590(6)	137.5(7)
2	C(18)-H(18)····O (3) ⁱⁱ	0.950(1)	2.286(1)	3.150(6)	150.9(3)
	$C(11)-H(11)\cdots I(6)^{i}$	0.949(8)	2.894(3)	3.757(1)	151.5(9)
4	C(39)-H(39A)···O(3) ⁱⁱ	0.988(8)	2.574(6)	2.951(0)	102.5(0)
	C(14)-H(14B)····I(4) ⁱ	0.989(1)	3.027(0)	3.879(9)	145.1(1)
	C(22)-H(22A)····F(6) ⁱ	0.990(8)	2.499(8)	3.075(3)	116.7(1)
5	C(4)- $H(4)$ ···F(1) ⁱ	0.951(2)	2.498(9)	3.319(6)	144.5(1)
	$C(28)-H(28B)\cdots F(5)^{i}$	0.980(4)	2.489(1)	3.335(3)	144.3(8)
6	C(8)-H(8)…F (1) ⁱ	0.949(6)	2.500(5)	3.385(4)	155.0(8)
	$C(12)-H(12)\cdots O(3)^{i}$	0.949(5)	2.593(5)	3.269(1)	128.0(4)
_	$C(39)-H(39A)\cdots N(1)^{i}$	0.990(2)	2.590(0)	3.520(3)	156.5(0)
/	$C(37)-H(37)\cdots F(1)^{i}$	0.950(1)	2,422(1)	3.311(2)	155.7(0)
	$C(6)-H(6)\cdots F(4)^{i}$	0.990(9)	2.536(3)	3.327(8)	136.7(2)

Symmetry code: i: x, -2 + y, z for 1; ii: -2 + x, y, -1 + z for 2; i: -1 + x, y, -1 + z; ii: -0.5 + x, 1.5 - y, -0.5 + z for 4; i: 2 - x, 2 - y, -2 - z for 5; i: -1 + y, -x + y, -z for 6; i: 3 + x, y, -1 + z for 7.

5. The distances of π - π interactions, and the distances and angles of C-H··· π contacts for complexes 2, 3 and 6.

Table S4 Distances (Å) of π - π interactions, and distances (Å) and angles (°) of C-H… π contacts for complexes **2**, **3** and **6**

Complexes	π-π		$C-H\cdots\pi$	
	face-to-face	center-to-center	$\mathrm{H}^{\dots}\pi$	С-Н…π
2	_	_	2.440(8)	166.7(8)
3	3.547(1) (imidazole)	3.959(6) (imidazole)		
	3.513(5) (anthraquinone)	3.613(5) (anthraquinone)	_	_
	3.393(1) (benzimidazole,	3.772(6) (benzimidazole,		
0	anthraquinone)	anthraquinone)	_	_

6. Electrochemical data for precursors L¹H₂·(PF₆)₂, L³H₂·(PF₆)₂ and L⁴H₂·(PF₆)₂, and complexes 5-7

Table S5. Electrochemical data in room temperature for precursors $L^1H_2 \cdot (PF_6)_2$, $L^3H_2 \cdot (PF_6)_2$ and $L^4H_2 \cdot (PF_6)_2$, and complexes 5-7 in CH₃CN using 0.1 M nBu_4NBF_4

Compounds	Solvent	$E^{o1}(V)$	$E^{o2}(V)$
		vs. SCE	vs. SCE
L ¹ H ₂ ·(PF ₆)	CH ₃ CN	-0.94	-1.45
2			
5	CH ₃ CN	-0.63	-1.06
L ³ H ₂ ·(PF ₆)	CH ₃ CN	-0.99	-1.72
2			
6	CH ₃ CN	-0.98	-1.66
L ⁴ H ₂ ·(PF ₆)	CH ₃ CN	-0.99	-1.73
2			
7	CH ₃ CN	-0.99	-1.68

7. Cyclic voltammograms of precursors $L^1H_2 \cdot (PF_6)_2$, $L^3H_2 \cdot (PF_6)_2$ and $L^4H_2 \cdot (PF_6)_2$.

Fig. S1 Cyclic voltammograms of precursors $L^1H_2 \cdot (PF_6)_2$, $L^3H_2 \cdot (PF_6)_2$ and $L^4H_2 \cdot (PF_6)_2$ in CH₃CN using 0.1 M ⁿBu₄NBF₄ as the supporting electrolyte.

8. The ¹H NMR spectra and ¹³C NMR spectra for all intermediates, precursors

and complexes 1-7.

Fig. S2. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for 1,8-bis(2-bromoethoxy)-9,10-anthraquinone.

Fig. S3. The ¹³C NMR (100 MHz, DMSO- d_6) spectrum for 1,8-bis(2-bromoethoxy)-9,10-anthraquinone.

Fig. S4. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for L¹H₂·Br₂.

Fig. S5. The ¹³C NMR (100 MHz, DMSO- d_6) spectrum for L¹H₂·Br₂.

Fig. S6. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for L¹H₂·(PF₆)₂.

Fig. S7. The ¹³C NMR (100 MHz, DMSO- d_6) spectrum for L¹H₂·(PF₆)₂.

Fig. S8. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for L²H₂·(PF₆)₂.

Fig. S9. The ¹³C NMR (100 MHz, DMSO- d_6) spectrum for L²H₂·(PF₆)₂.

Fig. S10. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for L³H₂·(PF₆)₂.

Fig. S11. The ¹³C NMR (100 MHz, DMSO- d_6) spectrum for L³H₂·(PF₆)₂.

Fig. S12. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for L⁴H₂·(PF₆)₂.

Fig. S13. The ¹³C NMR (100 MHz, DMSO- d_6) spectrum for L⁴H₂·(PF₆)₂.

Fig. S14. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for 1.

Fig. S15. The 13 C NMR (100 MHz, DMSO- d_6) spectrum for 1.

Fig. S16. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for 2.

Fig. S17. The 13 C NMR (100 MHz, DMSO- d_6) spectrum for 2.

Fig. S18. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for 3.

Fig. S19. The 13 C NMR (100 MHz, DMSO- d_6) spectrum for 3.

Fig. S20. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for **4**.

Fig. S21. The 13 C NMR (100 MHz, DMSO- d_6) spectrum for 4.

Fig. S22. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for 5.

Fig. S23. The 13 C NMR (100 MHz, DMSO- d_6) spectrum for 5.

Fig. S24. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for **6**.

Fig. S25. The 13 C NMR (100 MHz, DMSO- d_6) spectrum for 6.

Fig. S26. The ¹H NMR (400 MHz, DMSO- d_6) spectrum for 7.

Fig. S27. The 13 C NMR (100 MHz, DMSO- d_6) spectrum for 7.