Molecular salts of propranolol with dicarboxylic acids: Diversity of stoichiometry, supramolecular structures and physicochemical properties

D. Stepanovs, M. Jure, A. Yanichev, S. Belyakov, and A. Mishnev

S1

Powder X-ray diffraction (PXRD)

Powder diffraction was used to observe the results of molecular salt synthesis. Powder X-ray data were collected at room temperature with 0.02° step and scan speed of 0.5 s/step on *Rigaku ULTIMA IV* powder diffractometer (CuK α radiation, λ = 1.5418 Å) equipped with parallel beam geometry.

Experimental and calculated PXRD patterns of (pro) molecular salts:

S2 Single crystal synthesis by slow solvent evaporation (SSE)

Molecular salts formed when (**pro**) base (50 mg, 0.19 mmol) and dicarboxylic acid in 1:1 and 2:1 molar ratios were dissolved in corresponding solvent (**Table 1**) and left for solvent evaporation for several days. Single crystals suitable for X-ray analysis were collected during these experiments.

Experiments attempted to synthesize molecular salts of propranolol:

Molocular calt	Solver	nt	Staichiamatry 1.1	Staichiamatry 2:1	
wolecular salt	1:1	2:1	Stoichiometry 1.1	Storemonietry 2.1	
	Stoichior	netry			
(pro)+(ovo)-			PXRD,	PXRD,	
(pro) [*] (oxa)	меоп	DIVIFA	Single Crystal	Single Crystal	
(pro)+(fum)-	MeOH/MeCN		PXRD,	PXRD,	
(pro) [*] (ium)	(50/50)	INIEOH	Single Crystal	Single Crystal	
(pro)+(mol)-			PXRD,		
	INIEON	-	Single Crystal	N.C.F.D.	

N.C.P.D. – No crystalline phase detected

S3

Single crystal X-ray diffraction

X-Ray diffraction data were collected using a *Nonius Kappa CCD* diffractometer (CuK α radiation, $\lambda = 0.71073$ Å), equipped with low temperature *Oxford Cryosystems Cryostream Plus* device. Data were collected using *KappaCCD* Server Software, cell refined by *SCALEPACK*,¹ data reduction performed by *DENZO*¹ and *SCALEPACK*,¹ structures solved by direct method using *SIR2004*² and refined by *SHELXL97*³ as implemented in the program package WinGX.⁴ All non-

hydrogen atoms were refined anisotropically. The hydrogen atoms bound to carbon atoms and the carboxyl groups were positioned geometrically, with C–H = 0.93–0.97 Å and O–H = 0.82 Å, and refined as riding, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C,O)$. Software used to prepare *CIF*⁵ files was *SHELXL97*.³

	(pro)⁺(oxa)⁻ 1:1	(pro)⁺(oxa)⁻ 2:1	(pro)⁺(oxa)⁻ MeOH	
molecular formula	(C ₁₆ H ₂₂ NO ₂) ⁺	(C ₁₆ H ₂₂ NO ₂) ⁺	2(C ₁₆ H ₂₂ NO ₂) ⁺	
	·(C ₂ HO ₄) ⁻	·0.5(C ₂ O ₄) ²⁻	·(C ₂ O ₄) ²⁻ ·0.9(CH ₄ O)	
<i>M</i> _r	349.37	304.36	637.55	
crystal system	monoclinic	monoclinic	orthorhombic	
space group	P2 ₁	P2 ₁ /c	Pbn2 ₁	
<i>a,</i> Å	8.1696(3)	12.9928(6)	10.7741(2)	
<i>b,</i> Å	5.6053(2)	6.4517(3)	11.3507(2)	
с, Å	18.9321(9)	19.8420(13)	28.2413(6)	
<i>α</i> , °	90	90	90	
<i>β</i> , °	98.820(2)	106.600(2)	90	
γ, °	90	90	90	
<i>V,</i> Å ³	856.71(6)	1593.95(15)	3453.73(11)	
Ζ	2	4	4	
D _c /gcm ⁻¹	1.354	1.267	1.226	
F(000)	372	652	1368.8	
μ(Mo K _α)/mm⁻¹	0.102	0.090	0.088	
<i>Т/</i> К	173(2)	173(2)	173(2)	
crystal size/mm	$0.32 \times 0.08 \times 0.05$	$0.33 \times 0.09 \times 0.07$	$0.40 \times 0.13 \times 0.05$	
	<i>h</i> = −11→12	<i>h</i> = −16→17	<i>h</i> = −16→16	
range of indices	<i>k</i> = −8→7	<i>k</i> = −8→7	<i>k</i> = −16→16	
	/=−28→28	/=−25→26	/=−41→42	
collected reflections	4766	6582	12030	
unique reflections	3202	3782	12030	
R _{int}	-	0.134	-	
reflections with / > 2 \sigma(/)	2562	1647	4389	
no. parameters	244	200	423	
$R(F), F > 2\sigma(F)$	0.067	0.162	0.079	
wR(F ²), F > 2σ(F)	0.108	0.399	0.121	
R(F), all data	0.115	0.277	0.236	
wR(F ²), all data	0.124	0.453	0.160	
S	1.01	1.05	0.99	
Δ _r (max., min), eÅ ⁻³	0.27 and –0.24	0.57 and -0.45	0.38 and -0.27	
CCDC deposition No	1407010	1407382	1407011	

Selected crystal data, experimental and refinement parameters for (pro) structures

	(pro)⁺(fum)⁻ 1:1	(pro)⁺(fum)⁻ 2:1	(pro)⁺(mal)⁻
	(C ₁₆ H ₂₂ NO ₂) ⁺	$(C_{4},H_{2},NO_{2})^{+}$	(C4cHaaNOa)+.
molecular formula	$0.5(C_4H_4O_4)$	$(0_{10}, 1_{22}, 1_{0}, 0_{2})^{2}$	$(C_1 H_2 O_4)^{-1}$
	·0.5(C ₄ H ₂ O ₄) ²⁻	0.3(0411204)	(0411304)
<i>M</i> _r	375.41	317.37	375.41
crystal system	triclinic	triclinic	monoclinic
space group	PĪ	PĪ	P2 ₁ /n
<i>a,</i> Å	8.6157(2)	7.7989 (3)	9.2010(3)
<i>b,</i> Å	9.9155(2)	9.1669 (4)	8.7153(3)
<i>c,</i> Å	13.1345(4)	12.4724 (6)	24.7710(11)
<i>α</i> , °	97.391(1)	89.470 (2)	90
<i>β</i> , °	102.240(1)	75.754 (2)	94.618(1)
γ, °	109.899(1)	76.412 (3)	90
<i>V,</i> Å ³	1006.17(4)	838.95(6)	1979.93(13)
Ζ	2	2	4
D _c /gcm ⁻¹	1.239	1.256	1.259
F(000)	400	340	800
μ(Mo K _α)/mm⁻¹	0.091	0.088	0.093
<i>Т/</i> К	173(2)	173(2)	173 (2)
crystal size/mm	$0.44 \times 0.18 \times 0.15$	$0.41 \times 0.22 \times 0.20$	$0.33 \times 0.11 \times 0.09$
	h = −10→11	h = −10→10	h = −11→11
range of indices	k = −12→12	k = −11→11	k = −9→11
	I = −17→17	= −15→16	I = −32→30
collected reflections	6668	5428	11927
unique reflections	4597	3805	4491
R _{int}	0.018	0.021	0.148
reflections with I >	2015	2006	1010
2 <i>o</i> (I)	5915	5000	1013
no. parameters	260	225	260
R(F), F > 2 <i>о</i> (F)	0.048	0.052	0.083
wR(F ²), F > 2 <i>o</i> (F)	0.121	0.115	0.118
R(F), all data	0.056	0.071	0.238
wR(F ²), all data	0.127	0.126	0.153
S	1.04	1.04	0.98
Δ _r (max., min), eÅ ⁻³	0.46 and –0.22	0.18 and -0.19	0.44 and -0.22
CCDC deposition No	1407007	1407008	1407009

Selected crystal data, experimental and refinement parameters for (pro) structures (continued)

S4 ORTEP-3⁴ drawings of the asymmetric unit of the: 1) (pro)⁺(oxa)⁻ 1:1

2) (pro)⁺(oxa)⁻ 2:1

4) (pro)⁺(fum)⁻ 2:1

D–H…A	d _{D-H} (Å)	<i>d</i> _{H…A} (Å)	<i>d</i> _{D⋯A} (Å)	∠ D–H…A (°)	Symmetry code			
(pro) ⁺ (oxa) ⁻ 1:1								
015–H15…O25	0.90(4)	1.90(4)	2.767(3)	162(3)	intra			
O20–H20…O25	0.94(4)	1.56(4)	2.504(3)	174(3)	x; y–1; z			
N16–H16B…O24	0.99(4)	1.88(3)	2.847(3)	165(3)	x +1; y+1; z			
N16–H16A…O15	0.91(4)	2.31(3)	3.062(3)	140(3)	x; y+1; z			
N16–H16A…O21	0.91(4)	1.90(4)	2.767(3)	130(3)	x; y+1; z			
		(pro)⁺(oxa)⁻ 2:	1				
015–H15…O21	0.82	2.01	2.737(9)	147	x; y—1; z			
N16–H16B…O20	0.90	1.84	2.731(9)	168	intra			
N16–H16A…O20	0.90	2.26	2.890(9)	127	x; y–1; z			
N16–H16A…O21	0.90	2.07	2.923(9)	157	x; y–1; z			
		(p	ro)⁺(oxa) ⁻ Me	ОН				
015–H15…O20	0.82	1.82	2.638(3)	175	intra			
O15'–H15'…O20	0.82	1.89	2.633(4)	150	intra			
O26–H26… O15'	0.82	2.24	2.832(6)	129	intra			
N16–H16A…O24	0.90	1.88	2.765(4)	167	1.5 – <i>x</i> ; -0.5 + <i>y</i> ; <i>z</i>			
N16–H16B…O21	0.90	2.13	2.959(3)	154	intra			
N16'–H16A'…O24	0.90	1.89	2.785(4)	172	1.5 – <i>x</i> ; -0.5 + <i>y</i> ; <i>z</i>			
N16'-H16B'…O25	0.90	1.96	2.817(3)	159	intra			
		(pro)⁺(fum)⁻ 1	:1				
015–H15…O27	0.99(3)	1.71(3)	2.658(1)	159(1)	1 - x; - y; 1 - x			
N16–H16A…O15	0.86(2)	2.15(2)	2.834(2)	136(2)	intra			
N16–H16B…O26	0.90(2)	1.88(2)	2.787(2)	175(2)	intra			
O20–H20…O26	0.95(3)	1.60(3)	2.546(2)	175(3)	intra			
(pro) ⁺ (fum) ⁻ 2:1								
015–H15…O21	0.96	1.78	2.737(2)	176	2 − <i>x</i> ; 1 − <i>y</i> ; 1 − <i>z</i>			
O15'–H15'…O21	0.90	1.76	2.643(2)	168	2 − <i>x</i> ; 1 − <i>y</i> ; 1 − <i>z</i>			
N16–H16A…O21	0.94(2)	1.87(2)	2.809(2)	174(2)	intra			
N16-H16B…O20	0.98(2)	1.76(2)	2.726(2)	169(2)	2 − <i>x</i> ; 1 − <i>y</i> ; 1 − <i>z</i>			

Parameters of the strong hydrogen bonds in the studied crystal structures

015-H15…026

N16-H16A…O26

N16-H16B--O21

O20-H20...O27

0.98(4)

0.96(3)

0.91(3)

1.07(5)

1.75(4)

1.81(3)

2.18(3)

1.37(5)

(pro)⁺(mal)⁻

2.725(4)

2.770(4)

2.899(4)

2.423(4)

168(4)

177(3)

135(4)

169(4)

0.5 - x; -0.5 + y; 0.5 - z

intra

-1 + x; y; z

intra

Nuclear magnetic resonanse (NMR)

NMR spectra (¹H, ¹³C) were recorded on Varian 400MR spectrometers. Samples were dissolved in [d_6]-DMSO. Chemical shifts are measured relative to TMS ($\delta = 0$) for ¹H and ¹³C shifts were referenced to the residual carbon signal of the solvent. ¹H and ¹³C chemical shifts assignments were supported by 2D ¹H–¹³C correlations performed on (**pro**) and (**pro**)-HCl.

Proton designation, used in following tables:

		(pro)	HSQC	(pro)⁺(oxa)⁻	(pro)⁺(oxa)⁻	(pro)⁺(oxa)⁻	(pro)⁺(oxa)⁻	
(proj-nei			(pro)	(pro)	1:1	1:1	2:1	2:1
¹³ C	¹ H		¹ H	¹³ C	¹ H	¹³ C	¹ H	¹³ C
124.87	-	C-1	-	125.01	-	124.89	-	124.93
120.20	7.49	H-2	7.45	119.79	7.49	120.23	7.47	120.03
126.16	7.42	H-3	7.40	126.21	7.42	-	7.41	126.19
105.27	6.98	H-4	6.95	105.13	6.97	105.26	6.96	105.20
121.76	8.27	H-5	8.24	121.73	8.26	121.79	8.24	121.74
125.25	7.51	H-6	7.49	125.10	7.51, 7.53	-	7.50	125.20
126.49	7.53	H-7	7.51	126.38	7.49	-	7.52	126.45
127.41	7.87	H-8	7.85	127.36	7.87	127.43	7.86	127.40
153.75	-	C-9	-	154.17	-	153.77	-	153.94
134.00	-	C-10	-	134.00	-	134.02	-	134.01
69.97	4.18	H-α	4.06, 4.13	70.98	4.15, 4.17	70.02	4.12, 4.13	70.44
65.29	4.42	H-ß	4.01	68.49	4.34	65.35	4.19	66.68
46.9	3.11 3.24	H-γ	2.68, 2.78	50.06	3.11, 3.26	46.90	2.92, 3.05	48.31
49.83	3.38	Η-δ	2.73	48.18	3.39	48.77	3.09	49.05
18.20,	1 20 1 20		0.08.0.00	22.05	1 26 1 27	18.22	1 1 / 1 15	20.22
18.63	8.63	δ-CH3	0.36, 0.33	22.95	1.20, 1.27	18.76	1.14, 1.15	20.56
-	6.0	O-H	5.10	-	4.80	-	4.20	-
-	8.8, 9.2	N-H	1.50	-	4.80	-	4.20	-
			(oxa)		-	164.94	-	165.82

S6

	(pro)⁺	(pro)⁺	(pro)⁺	(pro)⁺	(mma)+(maal);	(mro)+(mol)-	
	(fum) ⁻ 1:1	(fum)⁻ 2:1	(fum)⁻ 2:1	(fum)⁻ 2:1	(pro) (mai)		
	¹ H	¹³ C	¹ H	¹³ C	¹ H	¹³ C	
C-1	-	124.91	-	124.95	-	124.86	
H-2	7.48	120.17	7.47	119.99	7.50	120.31	
H-3	7.41	126.18	7.41	126.20	7.43	126.16	
H-4	6.96	105.24	6.96	105.19	6.98	105.26	
H-5	8.26	121.79	8.24	121.76	8.26	121.73	
H-6	7.51	125.25	7.50	125.19	7.52	125.28	
H-7	7.53	126.49	7.52	126.44	7.54	126.54	
H-8	7.86	127.42	7.86	127.39	7.88	127.46	
C-9	-	153.83	-	153.98	-	153.69	
C-10	-	134.02	-	134.00	-	134.03	
Η-α	4.14, 4.16	70.15	4.11, 4.13	70.52	4.16, 4.17	69.97	
H-ß	4.34	65.39	4.18	66.76	4.30	65.35	
Η-γ	3.09, 3.23	47.23	2.90, 3.02	48.49	3.16, 3.27	46.72	
Η-δ	3.33	49.50	3.06	48.90	3.40	49.92	
δ-CH3	1.24, 1.26	18.43, 18.99	1.13, 1.14	20.44 20.75	1.26, 1.27	18.16, 18.82	
O-H	5.10	-	3.60	-	6.00	-	
N-H	5.10	-	3.60	-	8.40	-	
(fum)	6 5 2	135.13,					
(iuiii)	0.52	168.12					
				(mal)	6.026, 6.027,	136.12,	
				(mai)	6.028	167.21	

S7

Differential thermal analysis (DTA)

DTA was performed using Seiko Exstar6000 TG/DTA6300 (Seiko Instruments INC., Japan) equipment. The samples (4–10 mg) were heated in open aluminum pans at a rate of 10 °C/ min in nitrogen (flow of 20.0 mL/min).

DTA curves:

S8

Elemental analysis (EA)

EA was performed on Carlo ERBA Instruments EA1108 elemental analyzer.

Results of EA:

		Found, %		Calculated, %			
Element	C	Н	Ν	С	Н	Ν	
(pro) ⁺ (oxa) ⁻ 1:1	61.6823	6.5916	3.9342	61.8792	6.6354	4.0090	
(pro) ⁺ (oxa) ⁻ 2:1	66.9080	7.2682	4.5596	67.0855	7.2857	4.6020	
(pro) ⁺ (fum) ⁻ 1:1	63.9083	6.6853	3.6526	63.9862	6.7122	3.7310	
(pro)⁺(fum)⁻2:1	68.1166	7.3006	4.3376	68.1180	7.3044	4.4132	
(pro)⁺(mal)⁻	63.7951	6.6718	3.6856	63.9862	6.7122	3.7310	

Solubility experiments and UV/vis spectrometry

S9

The concentration of salt aqueous solutions was determined by *UV/vis* using *Camspec M501 UV/vis* Spectrophotometer. *UV/vis* absorbtion spectra in the 200-400 nm range were recorded for all samples. Separate linear calibration curve were plotted for each (**pro**) molecular salt. The absorption maxima with wavelength 237 nm have been used to calculate the concentrations for all samples.

The salt solubility was determined by dissolving of excess of cocrystal in 5 mL of deionized water at room temperature (23 \pm 1 °C). Suspensions were mixed for 24 h. The concentration of the molecular salt in the solution was determined by *UV/vis* spectrometry, and composition of the solid phase was analyzed by *PXRD*. *UV/vis* measurements were performed in triplicate.

Experimental PXRD patterns for precipitates obtained after solubility experiments

References

- (1) Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Methods in Enzymology*, 1997, *276*, 307–326.
- (2) Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. **2005**, *38*, 381–388.
- (3) Sheldrick, G. M. Acta Crystallogr. A. **2008**, 64, 112–122.
- (4) Farrugia, L. J. J. Appl. Crystallogr. **2012**, 45, 849–854.
- (5) Brown, I. D.; McMahon, B. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 317–324.