Supplementary Information

for the manuscript

"Supramolecular interactions in boron hydrides: How non-classical

bonding directs the crystal architecture"

David J. Wolstenholme,* Eric J. Fradsham and G. Sean McGrady*

Department of Chemistry

University of New Brunswick

P.O. Box 4400

Fredericton, N.B., Canada

E3B 5A3

S1 Computational Details

The unconstrained geometry optimisations for **1-4** were each performed at the B3LYP/6-311++G(d,p) level of approximation using the Gaussian09 software suite, starting from their experimentally determined geometries.¹ Tight convergence thresholds were imposed on these geometry optimisations with final maximum force and root-mean-square (rms) values as low as 0.000020 and 0.000008 hartrees/bohr, respectively. The subsequent topological analysis of the electron distributions and atomic properties for these systems were carried out using the AIM2000 software, while the δ values (delocalisation index) were calculated using the AIMALL package.^{2,3} The electrostatic potentials superimposed on isodensity surfaces were generated from the original CIFs of **1-4** using the program CrystalExplorer, in which 'wavefunction fitting', DFT/6-311G(d,p), is performed by constraining these calculations to experimental X-ray diffraction data via Tonto.^{4,5} This process leads to geometries that are in good agreement with the experimentally determined structures of these boranes, with the exception of the terminal B-H moieties which are fixed to neutron diffraction values for related B-H bonds (1.180 Å).

- [1] M.J. Frisch et al. Gaussian09, Revision A.02, Gaussian Inc., Wallingford, CT (USA), 2009.
- [2] F. Biegler-König, J. Schönbohm, D. Bayles, AIM2000-A program to analyse and visualize atoms in molecules, *J. Comput. Chem.*, 2001, **22**, 545.
- [3] T.A. Keith, *AIMALL*, version 13.05.06, TK Gristmill Software, 2013.
- [4] S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, CrystalExplorer (Version 3.1), University of Western Australia, Perth, Australia, 2012.
- [5] D. Jayatilaka, D.J. Grimwood, A. Lee, A. Lemay, A.J. Russel, C. Taylor, S.K. Wolff, Cassam-Chenai abd A. Whitton, *Tonto-A System for Computational Chemistry*, 2005.

Figure S1. Schematic plot of 1, with labels for the unique atoms.

Table S1. Salient geometrical parameters for the experimental and calculated structures of 1 $(CE = CrystalExplorer).^5$

Bond (Å)	X-Ray	Opt	СЕ	Angle (°)	X-Ray	Opt	CE
B1…B11	1.753(3)	1.765	1.753	B1-H3-B1 ¹	89.67(4)	84.24	89.67
B1-H1	1.102(2)	1.186	1.180	H1-B1-H2	124.29(6)	121.83	124.29
B1-H2	1.078(2)	1.186	1.180	H1-B1-H3	108.48(7)	108.97	109.80
B1-H3	1.233(2)	1.315	1.233	H2-B1-H3	109.52(5)	109.10	109.14
B1-H3 ¹	1.253(2)	1.315	1.253				
H1…H3 ²	2.733	-	2.670				
H2…H3 ³	2.835	-	2.765				

¹-x,-y,-z ²0.5+x,-0.5+y,0.5-z ³0.5-x,0.5-y,0.5+z

[5] H.W. Smith, W.N. Lipscomb, J. Chem. Phys., 1965, 43, 1060.

 $\rho_{b}(r)$ (eÅ⁻³) $\nabla^2 \rho_b(r) (e \text{\AA}^{-3})$ Bond δ(A,B) 0.097 B1…B1 --8.042 B1-H1 1.245 0.607 B1-H2 1.245 -8.042 0.607 0.833 B1-H3 1.866 0.348

Figure S2. $\nabla^2 \rho_b(\mathbf{r})$ plots in the plane of the B1-H3-B1 and H1-B1-B1 bonding in **1**. The positive (blue) and negative (red) contours are plotted in increments of 2.4 x 10⁻², 4.8 x 10ⁿ, 9.6 x 10ⁿ, and 1.9 x 10ⁿ⁺¹ (n = -2, -1, 0, 1, 2, and 3).

Figure S3. Plot of a 0.003 au isodensity surface of 1, illustrating the maximum amount of density (~0.022 eÅ⁻³) shared by each B_2H_6 moiety.

Figure S4. Schematic plot of 2 with labels for the unique atoms.

Table S3. Salient geometrical parameters for the experimental and calculated structures of 2 $(CE = CrystalExplorer).^6$

Bond (Å)	X-Ray	Opt	CE	Angle (°)	X-Ray	Opt	CE
B1-B3	1.709(4)	1.721	1.709	B1…B2…B3	55.38	55.09	55.38
B1…B2	1.845(3)	1.860	1.845	B2…B3…B4	99.47	98.79	99.47
B1…B4	1.843(7)	1.861	1.843	B3…B4…B1	55.33	55.07	55.33
B3…B2	1.833(5)	1.860	1.833	B4…B1…B2	98.89	98.78	98.89
B3…B4	1.838(4)	1.861	1.838	B1-H2…B2	91.76	88.08	91.76
B1-H1	1.157(4)	1.181	1.180	B2…H5-B3	89.30	88.07	89.30
B1-H2	1.129(3)	1.257	1.129	B3-H7…B4	95.09	88.14	95.05
B1-H10	1.173(3)	1.257	1.173	B1-H10…B4	95.97	88.14	95.97
B2…H2	1.424(4)	1.414	1.424	H1-B1-H2	109.94	111.23	109.94
B2-H3	1.137(3)	1.186	1.180	H1-B1-H10	112.66	111.27	112.66
B2-H4	1.086(4)	1.192	1.180	H2-B1-H10	96.74	93.82	96.74
B2…H5	1.413(3)	1.415	1.413	H2…B2-H3	104.01	104.72	104.01
B3-H5	1.185(2)	1.257	1.185	H2…B2-H4	96.29	95.80	96.29
B3-H6	1.063(2)	1.181	1.180	H2…B2…H5	130.64	137.73	130.64
B3-H7	1.141(4)	1.257	1.141	H3-B2-H4	126.74	119.02	126.74
B4…H7	1.344(4)	1.413	1.344	H3-B2…H5	108.62	104.67	108.62
B4-H8	1.118(2)	1.186	1.180	H4-B2…H5	92.86	95.80	92.86
B4-H9	1.023(3)	1.192	1.180	H5-B3-H6	108.30	111.21	108.30
B4…H10	1.304(3)	1.414	1.304	H5-B3-H7	92.34	93.86	92.34
$H1 \cdots H1^{1}$	2.714	-	2.671	H6-B3-H7	117.57	111.26	117.57
H1…H5 ²	2.615	-	2.599	H7…B4-H8	107.82	104.78	107.82
H1…H8 ³	2.707	-	2.635	H7…B4-H9	95.51	95.77	95.51
H2…H9 ⁴	2.896	-	2.768	H7…B4…H10	130.66	137.61	130.66
H3…H7 ⁵	2.606	-	2.575	H8-B4-H9	125.33	119.01	125.33
H3…H10 ⁶	2.644	-	2.616	H8-B4…H10	102.79	104.78	102.79
H4…H6 ⁷	2.760	-	2.647	H9-B4…H10	97.24	95.74	97.24
$H4 \cdots H9^4$	2.912	-	2.711				
$H4 \cdots H10^4$	2.728	-	2.649				
H6…H9 ²	2.739	-	2.522				

¹1-x,1-y,1-z; ²0.5+x,0.5-y,0.5+z; ³1-x,1-y,-z; ⁴-x,1-y,-z ⁵x,y,1+z; ⁶0.5-x,-0.5+y,0.5-z; ⁷-0.5+x,0.5-y,-0.5+z

[6] E.B. Moore Jr., R.E. Dickerson, W.N. Lipscomb, J. Chem. Phys., 1957, 27, 209.

Bond	$\rho_{b}(r) (e^{A^{-3}})$	$\nabla^2 \rho_b(\mathbf{r}) (\mathbf{e} \mathrm{\AA}^{-3})$	δ(A,B)
B1-B3	0.905	-5.453	0.524
B1…B2	-	-	0.151
B1…B4	-	-	0.151
B3…B2	-	-	0.151
B3…B4	-	-	0.151
B1-H1	1.233	-6.735	0.670
B1-H2	0.928	1.755	0.473
B1-H10	0.927	1.764	0.473
B2…H2	0.698	0.139	0.310
B2-H3	1.247	-8.030	0.615
B2-H4	1.226	-7.674	0.593
B2…H5	0.697	0.132	0.309
B3-H5	0.928	1.748	0.474
B3-H6	1.233	-6.733	0.670
B3-H7	0.927	1.771	0.474
B4…H7	0.698	0.181	0.310
B4-H8	1.247	-8.031	0.616
B4-H9	1.225	-7.674	0.593
B4…H10	0.697	0.173	0.310

Table S4. Salient topological parameters of the electron density for the optimised structure of 2.

Figure S5. $\nabla^2 \rho_b(\mathbf{r})$ plot in the plane of the B1-B2-B3 bonding in **2**. The positive (blue) and negative (red) contours are plotted in increments of 2.4 x 10⁻², 4.8 x 10ⁿ, 9.6 x 10ⁿ, and 1.9 x 10ⁿ⁺¹ (n = -2, -1, 0, 1, 2, and 3).

Figure S6. Plot of a 0.004 au isodensity surface of 2, illustrating the maximum amount of density (\sim 0.027 eÅ⁻³) shared for selected B-H···H-B interactions.

Figure S7. Schematic plot of 3 with labels for the unique atoms.

Table S5. Salient geometrical parameters for the experimental and calculated structures of 3(CE = CrystalExplorer).⁷

Bond (Å)	X-Ray	Opt	CE	Angle (°)	X-Ray	Opt	CE
B1-B2	1.659(18)	1.695	1.659	B1-B2…B2	57.71	57.96	57.71
B2…B2	1.772(15)	1.798	1.772	H1-B1-B2	130.94	131.38	130.94
B1-H1	1.21(5)	1.178	1.180	H2-B2-B1	114.75	131.74	114.75
B2-H2	1.20(5)	1.180	1.180	B2…H3…B2	82.27	83.81	82.27
B2-H3	1.35(5)	1.346	1.347	H2-B2…H3	117.41	108.07	117.41
H1…H3 ¹	2.59	-	2.617				
$H2 \cdot \cdot \cdot H2^2$	2.46	-	2.503				

¹-x,-y,1+z; ²1-x,-y,z

[7] W.J. Dulmage, W.N. Lipscomb, Acta Cryst., 1952, 5, 260.

Bond	$\rho_{b}(r) (e Å^{-3})$	$\nabla^2 \rho_b(\mathbf{r}) (e \text{\AA}^{-3})$	δ(A,B)
B1-B2	0.913	-3.979	0.524
B2…B2	-	-	0.283
B1-H1	1.201	-5.472	0.752
B2-H2	1.248	-7.820	0.688
B2-H3	0.804	0.295	0.403

Table S6. Salient topological parameters of the electron density for the optimised structure of 3.

Figure S8. $\nabla^2 \rho_b(\mathbf{r})$ plots in the plane of the B2-B2-B2 and B2-B1-B2 bonding in **3**. The positive (blue) and negative (red) contours are plotted in increments of 2.4 x 10⁻², 4.8 x 10ⁿ, 9.6 x 10ⁿ, and 1.9 x 10ⁿ⁺¹ (n = -2, -1, 0, 1, 2, and 3).

Figure S9. Plots of a 0.004 au isodensity surface for **3**, illustrating the maximum amount of density (~0.027 eÅ⁻³) for (a) heteropolar B-H···H-B interactions and (b) homopolar B-H···H-B interactions between each B_5H_9 moiety.

Figure S10. Schematic plot of 4 with labels for the unique atoms.

Table S7. Salient geometrical parameters for the experimental and calculated structures of 4 $(CE = CrystalExplorer).^8$

Bond (Å)	nd (Å) X-Ray O		CE Angle (°)		X-Ray	Opt	CE
Molecule 1							
B1-B2	1.792(2)	1.792	1.791	B1-B2-B3	61.06	61.19	61.07
B1-B3	1.790(2)	1.790	1.790	B1-B2-B5	58.53	58.59	58.52
B1-B4	1.988(2)	1.991	1.988	B1-B5-B4	69.22	69.35	69.17
B1-B5	1.749(2)	1.750	1.749	B2-B3-B4	61.14	61.27	61.23
B2-B3	1.731(2)	1.724	1.731	B2-B4-B5	60.54	60.52	60.46
B2-B4	1.787(3)	1.792	1.789	B2-B5-B5	60.22	60.00	60.01
B2-B5	1.787(2)	1.785	1.787	B1-H6-B3	83.76	84.87	83.76
B3-B4	1.782(3)	1.790	1.780	B3-H7-B4	83.79	84.88	83.83
B4-B5	1.751(2)	1.750	1.753				
B5-B5	1.779(3)	1.785	1.779				
B1-H1	1.186(3)	1.181	1.180				
B2-H2	1.186(3)	1.181	1.180				
B3-H3	1.177(5)	1.180	1.180				
B4-H4	1.190(4)	1.181	1.180				
B5-H5	1.191(10)	1.183	1.180				
B1-H6	1.327(4)	1.318	1.328				
B3-H6	1.354(2)	1.335	1.354				
B3-H7	1.344(4)	1.335	1.344				
B4-H7	1.324(4)	1.318	1.321				
H1…H9 ¹	2.650	-	2.657				
H1…H10 ²	2.569	-	2.574				
H1…H12 ³	2.593	-	2.602				
H2…H3 ⁴	2.585	-	2.589				
H2…H8 ³	2.677	-	2.684				
H3…H4 ⁵	2.787	-	2.789				
H3…H8 ⁶	2.552	-	2.551				
H4…H12 ¹	2.554	-	2.569				
H4…H13 ²	2.653	-	2.660				

H5…H6 ⁴	2.405	-	2.411				
H5…H7 ⁷	2.413	-	2.419				
H5…H8 ²	2.565	-	2.572				
H5…H11 ³	2.574	-	2.588				
H6…H11 ⁶	2.617	-	2.624				
			Mole	cule 2			
B6-B7	1.792(3)	-	1.792	B6-B7-B8	61.08	-	61.08
B6-B8	1.792(2)	-	1.792	B6-B7-B10	58.57	-	58.57
B6-B9	1.986(2)	-	1.986	B6-B10-B9	69.05	-	69.05
B6-B10	1.750(2)	-	1.750	B7-B8-B9	61.08	-	61.08
B7-B8	1.733(2)	-	1.733	B7-B9-B10	60.49	-	60.49
B7-B9	1.787(3)	-	1.783	B7-B10-B10	60.23	-	60.23
B7-B10	1.784(2)	-	1.784	B6-H13-B8	84.33	-	84.33
B8-B9	1.783(3)	-	1.783	B8-H14-B9	83.60	-	83.60
B9-B10	1.755(2)	-	1.755				
B10-B10	1.772(3)	-	1.771				
B6-H8	1.183(3)	-	1.180				
B7-H9	1.185(3)	-	1.180				
B8-H10	1.183(4)	-	1.180				
B9-H11	1.190(5)	-	1.180				
B10-H12	1.193(3)	-	1.180				
B6-H13	1.321(4)	-	1.321				
B8-H13	1.349(4)	-	1.349				
B8-H14	1.346(4)	-	1.346				
B9-H14	1.329(4)	-	1.329				
H9…H10 ⁸	2.568	-	2.573				
H9…H10 ⁹	2.783	-	2.787				
H12…H13 ⁸	2.415	-	2.422				
H12…H14 ¹⁰	2.410	-	2.413				

 ${}^{1}-0.5+x,1+y,-z;\ {}^{2}-0.5+x,1+y,1-z;\ {}^{3}x,1+y,z;\ {}^{4}x,y,1+z;\ {}^{5}0.5+x,y,-z;\ {}^{6}x,1+y,-1+z;\ {}^{7}-x,0.5-y,1+z;\ {}^{8}x,y,-1+z;\ {}^{9}1-x,-1-y,1-z;\ {}^{10}0.5-x,-1-y,-1+z$

[8] R. Brill, H. Dietrich, H. Dierks, *Acta Cryst.*, 1971, **B27**, 2003.

Table	S8 .	Salient	topolog	gical	parameters	of th	e electron	density	for t	he optimised	d structure o	of 4	ł
-------	-------------	---------	---------	-------	------------	-------	------------	---------	-------	--------------	---------------	------	---

Bond	$\rho_{b}(r) (e Å^{-3})$	$\nabla^2 \rho_b(\mathbf{r}) (\mathbf{e} \mathrm{\AA}^{-3})$	δ(A,B)
B1-B2	0.790	-2.731	0.428
B1-B3	-	-	0.271
B1-B4	-	-	0.364
B1-B5	0.801	-3.166	0.500
B2-B3	0.871	-4.153	0.512
B2-B4	0.790	-2.731	0.428
B2-B5	0.781	-2.730	0.430
B3-B4	-	-	0.270

B4-B5	0.801	-3.164	0.500
B5-B5	0.782	-2.187	0.465
B1-H1	1.256	-7.944	0.700
B2-H2	1.231	-6.674	0.734
B3-H3	1.262	-8.406	0.675
B4-H4	1.256	-7.945	0.698
B5-H5	1.234	-7.069	0.724
B1-H6	0.817	2.068	0.425
B3-H6	0.839	-0.631	0.412
B3-H7	0.839	-0.630	0.412
B4-H7	0.817	2.069	0.425

Figure S11. $\nabla^2 \rho_b(\mathbf{r})$ plots in the plane of the B1-B5-B4, B1-B2-B3, and B1-H6-B3 bonding in 4. The positive (blue) and negative (red) contours are plotted in increments of 2.4 x 10⁻², 4.8 x 10ⁿ, 9.6 x 10ⁿ, and 1.9 x 10ⁿ⁺¹ (n = -2, -1, 0, 1, 2, and 3).

Figure S12. Plots of (a) 0.0055 au and (b) 0.004 au isodensity surfaces for 4, illustrating the maximum amount of density (~0.037 and 0.027 eÅ⁻³, respectively) shared for selected B-H···H-B interactions.