Electronic Supplementary Information

Hydrogen-Bonding Networks of Purine Derivatives and Their Bilayers for Guest Intercalation

Yoona Jang,^{*a*} Seo Yeon Yoo,^{*b*} Hye Rin Gu,^{*b*} Yu Jin Lee,^{*b*} Young Shin Cha,^{*b*} Laekyeong You,^{*a*} Kyungkyou Noh^{*a*} and Jaheon Kim^{**a*}

^a Department of Chemistry, Soongsil University, Seoul 06978, Korea. Fax: +82 2 824 4383; Tel: +82 2 820 0459; E-mail: jaheon@ssu.ac.kr

^b Hankuk Academy of Foreign Studies, Yongin 17035, Korea.

CONTENTS (Total 21 pages)

1. NMR and IR Spectra	2	
2. Crystal Pictures		8
3. Single Crystal X-ray Diffraction Analyses		9
4. NMR Spectra for the Guest@pr-GCl Crystals	17	
5. PXRD Patterns		21

1. NMR and IR Spectra

Figure S1. ¹H-NMR spectrum of pr-GCl dissolved in DMSO-*d*_{6:}.

Figure S2. ¹³C-NMR spectrum of pr-GCl in DMSO-*d*₆.

9-Propyl-Guanine (pr-G)

Figure S3. ¹H-NMR spectrum of pr-G in DMSO-*d*₆.

Figure S4. ¹³C-NMR spectrum of pr-G in DMSO-*d*₆.

Figure S5. FT-IR spectra of pr-GCl and pr-G where the –C=O band for pr-G is highlighted.

6-Chloro-9-pentyl-purin-2-amine (pt-GCl)

Figure S6. ¹H-NMR spectrum of pt-GCl in DMSO-*d*₆.

Figure S7. ¹³C-NMR spectrum of pt-GCl in DMSO-*d*₆.

9-Pentyl-Guanine (pt-G)

Figure S8. ¹H-NMR spectrum of pt-G in DMSO-*d*₆.

Figure S9. ¹³C-NMR spectrum of pt-G in DMSO-*d*₆.

Figure S10. FT-IR spectra of pt-GCl and pt-G where the –C=O band for pr-G is highlighted.

2. Crystal Pictures

n-Hexane@pr-GCl

Benzene@pr-GCl

Cyclohexane@pr-GCl

o-Xylene@pr-GCl

m-Xylene@pr-GCl

Isooctane@pr-GCl

pt-GCl

Figure S11. Crystal pictures seen under an optical microscope.

3. Single Crystal X-ray Diffraction Analyses

Table S1. Crystal data and structure refinement for pr-GCl(Refined with intensity data treated with SQUEEZE).

Empirical formula	C8 H10 Cl N5		
Formula weight	211.66		
Temperature	173(2) K		
Wavelength	0.71075 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 14.916(7) Å	$\alpha = 64.365(8)^{\circ}$.	
	<i>b</i> = 14.964(7) Å	β= 89.997(8)°.	
	c = 15.309(7) Å	$\gamma = 62.904(9)^{\circ}$.	
Volume	2659(2) Å ³		
Z	8		
Density (calculated)	1.058 Mg/m ³		
Absorption coefficient	0.263 mm ⁻¹		
F(000)	880		
Crystal size	0.300 x 0.300 x 0.250 mm ³		
Theta range for data collection	3.025 to 26.373°.		
Index ranges	-18<=h<=17, -18<=k<=18, -19<=l<=17		
Reflections collected	21213		
Independent reflections	10218 [R(int) = 0.1238]		
Completeness to theta = 25.242°	94.6 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	10218 / 0 / 506		
Goodness-of-fit on F ²	0.865		
Final R indices [I>2sigma(I)]	R1 = 0.0989, wR2 = 0.2552		
R indices (all data)	R1 = 0.1766, wR2 = 0.3053		
Extinction coefficient	0.033(4)		
Largest diff. peak and hole	0.442 and -0.434 e.Å ⁻³		

 Table S2. Possible Hydrogen Bonds for pr-GCl

Hydrogen bonds with $H_A < r(A) + 2.000$ Angstroms and $ 110$ deg.					
D-H	d(D-H)	d(HA) <dha< td=""><td>d(DA</td><td>A) A</td></dha<>	d(DA	A) A
C5-H5A	0.950	2.283	159.12	3.189	N6
C6-H6B	0.990	2.943	124.19	3.594	Cl3
C13-H13A	0.950	2.313	159.41	3.220	N1 [x+1, y, z]
C14-H14A	0.990	2.961	123.74	3.606	Cl4 [x+1, y, z]
C21-H21A	0.950	2.294	159.29	3.200	N16 [x, y, z-1]
C22-H22A	0.990	2.953	125.91	3.623	Cl1 [x, y, z-1]
С29-Н29А	0.950	2.304	158.94	3.208	N11 [x-1, y, z+1]
N3-H3A	0.880	2.219	177.92	3.099	N17 [x, y, z-1]
N3-H3B	0.880	2.541	170.52	3.412	N9 [x-1, y, z]
N8-H8D	0.880	2.197	171.43	3.070	N12 [x, y, z+1]
N8-H8E	0.880	2.516	171.59	3.389	N4
N13-H13B	0.880	2.223	174.84	3.100	N7 [x, y, z-1]
N13-H13C	0.880	2.516	171.69	3.389	N19 [x+1, y, z-1]
N18-H18A	0.880	2.222	178.25	3.101	N2 [x, y, z+1]
N18-H18B	0.880	2.487	173.30	3.362	N14 [x, y, z+1]

Figure S12. ORTEP view of four independent pr-GCl molecules in an asymmetric unit is displayed at 50% probability level.

Table S3. Crystal data and structure refinement for pt-GCl.

Empirical formula	C20 H28 Cl2 N10		
Formula weight	479.42		
Temperature	296(2) K		
Wavelength	0.71075 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 15.078(3) Å	$\alpha = 81.61(3)^{\circ}$.	
	<i>b</i> = 15.132(3) Å	β= 80.08(3)°.	
	c = 21.864(4) Å	$\gamma = 89.95(3)^{\circ}$.	
Volume	4860.0(18) Å ³		
Z	8		
Density (calculated)	1.310 Mg/m ³		
Absorption coefficient	0.296 mm ⁻¹		
F(000)	2016		
Crystal size	0.300 x 0.200 x 0.100 mm ³		
Theta range for data collection	2.988 to 26.373°.		
Index ranges	-18<=h<=18, -18<=k<=18, -27<=l<=23		
Reflections collected	39215		
Independent reflections	18927 [R(int) = 0.1619]		
Completeness to theta = 25.242°	96.2 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	18927 / 48 / 1153		
Goodness-of-fit on F ²	0.992		
Final R indices [I>2sigma(I)]	R1 = 0.1411, wR2 = 0.3251		
R indices (all data)	R1 = 0.2303, wR2 = 0.3679		
Largest diff. peak and hole	0.572 and -0.705 e.Å ⁻³		

 Table S4. Possible Hydrogen Bonds for pt-GCl

Hydrogen bone	ds with HA	A < r(A) +	- 2.000	Angstro	oms and $\langle DHA \rangle 110 \text{ deg.}$		
D-H	d(D-H) d((HA) <	DHA	d(DA) A		
N5A-H5A1	0.860	2.231 1	73.15	3.086	N2F		
N5A-H5A2	0.860	2.684 1	58.60	3.499	N3B [x+1, y, z]		
C5A-H5A	0.930 2	2.434 15	57.86	3.314	N1B [x+1, y-1, z]		
C6A-H6A2	0.970	2.969 1.	31.42	3.684	Cl1E		
N5B-H5B1	0.860	2.638 10	62.07	3.466	N3A [x-1, y+1, z]		
N5B-H5B2	0.860	2.284 17	71.46	3.137	N2E [x, y+1, z]		
C5B-H5B	0.930 2	2.452 15	5.35	3.320	N1A [x-1, y, z]		
C6B-H6B1	0.970	2.939 13	30.84	3.648	Cl1F		
N5C-H5C1	0.860	2.221 17	76.11	3.080	N2G [-x, -y+2, -z+1]		
N5C-H5C2	0.860	2.528 17	74.06	3.384	N3D [x-1, y, z]		
C5C-H5C	0.930 2	2.365 16	0.83	3.258	N1D		
С6С-Н6С2	0.970	2.951 12	28.25	3.632	Cl1H [x, y+1, z]		
N5D-H5D1	0.860	2.234 1	77.81	3.094	N2H		
N5D-H5D2	0.860	2.505 1	73.87	3.361	N3C		
C5D-H5D	0.930 2	2.363 16	51.90	3.259	N1C [x+1, y, z]		
C6D-H6D1	0.970	2.944 12	28.13	3.624	Cl1G [-x+1, -y+1, -z+1]		
N5E-H5E1	0.860 2	2.614 16	57.35	3.458	N3F [x, y-1, z]		
N5E-H5E2	0.860 2	2.224 17	70.71	3.076	N2B [x, y-1, z]		
C5E-H5E	0.930 2	.384 15	9.69	3.272	N1F		
N5F-H5F1	0.860 2	2.222 16	69.69	3.072	N2A		
N5F-H5F2	0.860 2	2.628 16	57.22	3.472	N3E		
C5F-H5F	0.930 2.	.350 161	1.53	3.246	N1E [x, y+1, z]		
C6F-H6F2	0.970 2	2.973 13	0.69	3.680	Cl1B [x+1, y, z]		
N5G-H5G1	0.860	2.200 1	78.68	3.060	N2C [-x, -y+2, -z+1]		
N5G-H5G2	0.860	2.549 1	73.66	3.405	N3H [-x, -y+1, -z+1]		
C5G-H5G	0.930 2	2.301 16	53.07	3.202	N1H [-x+1, -y+1, -z+1]		
C6G-H6G1	0.970	2.917 12	25.22	3.566	Cl1D [-x+1, -y+2, -z+1]		
N5H-H5H1	0.860	2.194 1	77.89	3.053	N2D		
N5H-H5H2	0.860	2.570 1	73.97	3.426	N3G [-x+1, -y+1, -z+1]		
С5Н-Н5Н	0.930 2	2.311 16	53.11	3.213	N1G [-x, -y+1, -z+1]		
С6Н-Н6Н1			0.970		2.928 126.01	3.585	Cl1C

Figure S13. ORTEP view of eight independent pt-GCl molecules in an asymmetric unit is displayed at 50% probability level.

 Table S5. Crystal data and structure refinement for p-Xylene@pr-GCl.

Empirical formula	C24 H30 Cl2 N10			
Formula weight	529.48			
Temperature	173(2) K			
Wavelength	0.710 Å			
Crystal system	Orthorhombic			
Space group	Ccca			
Unit cell dimensions	a = 15.022(3) Å	<i>α</i> = 90°.		
	<i>b</i> = 44.140(9) Å	β= 90°.		
	c = 15.211(3) Å	$\gamma = 90^{\circ}$.		
Volume	10086(3) Å ³			
Z	16			
Density (calculated)	1.395 Mg/m ³			
Absorption coefficient	0.293 mm ⁻¹			
F(000)	4448			
Crystal size	0.30 x 0.20 x 0.02 mm ³			
Theta range for data collection	2.709 to 30.473°.			
Index ranges	0<=h<=22, 0<=k<=62, 0<=l<=23			
Reflections collected	96254			
Independent reflections	7649 [R(int) = 0.534]	7649 [R(int) = 0.534]		
Completeness to theta = 25.214°	99.5 %	99.5 %		
Absorption correction	Empirical	Empirical		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²		
Data / restraints / parameters	7649 / 100 / 432	7649 / 100 / 432		
Goodness-of-fit on F ²	2.240			
Final R indices [I>2sigma(I)]	R1 = 0.2602, wR2 = 0.5	R1 = 0.2602, wR2 = 0.5974		
R indices (all data)	R1 = 0.3296, wR2 = 0.6304			
Largest diff. peak and hole	2.190 and -1.519 e.Å ⁻³			

Figure S14. ORTEP view of *p*-xylene@pr-GCl molecules in an asymmetric unit is displayed at 50% probability level. One of two pr-GCl molecules is disordered over two sites with an equal probability. At the bottom, two independent and disorder *p*-xylene molecules are drawn separately at 20% probability level.

4. NMR Spectra for the Guest-Included pr-GCl Crystals

Figure S15. ¹H-NMR spectra for the guest-included pr-GCl crystals: guest = (a) cryclohexane, (b) *n*-hexane, (c) isooctane, (d) benzene, (e) *o*-xylene, (f) *m*-xylene, and (g) *p*-xylene. Only the NMR spectra for the crystals immersed in each solvent for 5 min are shown for simplicity.

(g) p-xylene@pr-GCl

p-Xylene @PrGCl 5min 20 degree (2nd)

5. PXRD Patterns

Figure S16. (**Top**) Comparison of the PXRD patterns measured for the pr-GCl crystals immersed in solvent (solid line) and those for the recrystallized pr-GCl in solvent (dotted and inverted lines). It is not certain why *p*-xylene gives different PXRD patterns for the samples prepared differently. (**Bottom**) Comparison of the measured PXRD pattern for dried pt-GCl crystals with the simulated one generated using a crystal structure.