Supporting Information

for

Synthesis and Luminescent of Octacarboxy Cubic Polyhedral

Oligosilsesquioxanes Coordinated with Terbium

Qianqian Xu, Zhiqiang Li, Meng Chen and Huanrong Li* School of Chemical Engineering and Technology, Hebei University of Technology,

GuangRong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.

E-mail: lihuanrong@hebut.edu.cn

Table of Contents

Scheme S1. Synthesis procedures of the functionalized OBAPOSS.	S3							
Scheme S2. Synthesis procedures of the functionalized Tb@)MBAPOSS.	S3							
Figure S1. The thermogravimetric analysis of a) OBAPOSS and b) MBAPOSS.	S4							
Figure S2. FT-IR spectra of T, Tb@MBAPOSS, NH ₂ -POSS and MBAPOSS.	S4							
Figure S3. Decay curve of Tb@OBAPOSS, Tb@MBArPOSS and Tb(BA) ₃ .	S5							
Figure S4. Changes of emission spectra of Tb(BA) ₃ , Tb@MBAPOSS at different								
exposure time under UV light irradiation.	S5							
Table S1. Changes of decay time of the ${}^{5}D_{4}$ state of Tb(BA) ₃ and Tb@MBAPOSS								
under UV irradiation.	S 6							
Table S2. Changes of the quantum yield of Tb(BA) ₃ , Tb@MBAPOSS	and							
Tb@OBAPOSS under UV irradiation.	S6							
Figure S5. Changes of emission luminescence spectra of Tb(BA) ₃ , Tb@MBAPO	OSS							
at different exposure time at 120	°C.							
S6								
Figure S6. The P-XRD of a) Tb@MBAPOSS and b) Tb@OBAPOSS after 20h-U	JV-							

irradiation and heating at 120 °C for 20 h. S7

Scheme S1. Synthesis procedures of the functionalized OBAPOSS.

Scheme S2. Synthesis procedures of the functionalized Tb@)MBAPOSS.

Figure S1. The thermogravimetric analysis of a) OBAPOSS and b) MBAPOSS.

Figure S2. FT-IR spectra of a) T, b) NH2-POSS, c) MBAPOSS and d) Tb@MBAPOSS.

As shown in Figure S2, the FT-IR spectra of all the samples show peaks at 3000-2800 and 1460-1300 cm⁻¹, which can be assigned to the stretching and bending modes of the isobutyl moieties. In addition, an intense peak at 1110 cm⁻¹ can be attributed to asymmetric stretching of Si-O-Si, and the band at 802 cm⁻¹ can be assigned to Si-C rocking. The FT-IR spectra of T (Figure S2a) show two bands at 3250 and 890 cm⁻¹ may be assigned to stretching and bending of Si-OH, respectively, which were no longer seen in the IR spectrum of NH₂-POSS, indicating that the cage was completely condensed. In addition, a intense peak at about 1641 cm⁻¹ assigned to the C=N stretching can be observed in MBAPOSS and Tb@MBAPOSS spectrum (Figure S2

c&d). In addition, the bands at 1684 cm⁻¹ belong to stretching vibrations of carboxyl in MBAPOSS. After coordinated with Tb³⁺, the characteristic stretching vibrations of carboxyl at 1684 cm⁻¹ almost completely disappeared. This phenomenon indicates that the Tb³⁺ is successfully coordinated to OBAPOSS.

Figure S3. Decay curve of Tb@OBAPOSS (red line), Tb@MBAPOSS (blue line) and Tb(BA)₃ (black line) measured at room temperature using an excitation of 300 nm and monitored at 544 nm, which can be well-fitted by mono-exponential function.

Figure S4. Changes of emission luminescence spectra of a) Tb(BA)₃, b) Tb@MBAPOSS monitored at 544 nm at different exposure time under UV light irradiation ($\lambda_{ex} = 300$ nm).

-						
Time / h	0	4	8	12	16	20
$\tau_{Tb(BA)3/}ms$	0.51	0.54	0.50	0.44	0.40	0.37
$\tau_{Tb@MBAPOSS/MS}$	0.54	0.49	0.48	0.49	0.50	0.49
$\tau_{Tb@OBAPOSS/}ms$	0.91	0.92	0.91	0.90	0.89	0.90

Table S1. Changes of decay time of the ${}^{5}D_{4}$ state of Tb(BA)₃, Tb@MBAPOSS and Tb@OBAPOSS under UV irradiation

Table S2. Changes of the quantum yield of Tb(BA)₃, Tb@MBAPOSS and Tb@OBAPOSS under UV irradiation

Time / h	0	4	8	12	16	20
$\Phi_{Tb(BA)3/}ms$	25.3%	24.5%	22.1%	20.9%	18.2%	16.3%
$\Phi_{\text{Tb@MBAPOSS}/\text{ms}}$	31.4%	30.2%	30.8%	29.1%	29.7%	28.9%
$\Phi_{Tb@OBAPOSS/}ms$	39.8%	39.2%	40.1%	39.0%	39.5%	39.0%

Figure S5. Changes of emission luminescence spectra of a) $Tb(BA)_3$, b) Tb@MBAPOSS monitored at 544 nm at different exposure time at 120 °C ($\lambda_{ex} = 300$ nm).

Figure S6. The P-XRD of a) Tb@MBAPOSS and b) Tb@OBAPOSS after 20h-UVirradiation and heating at 120 °C for 20 h.