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Scheme S1. Synthesis procedures of the functionalized OBAPOSS.
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Scheme S2. Synthesis procedures of the functionalized Tb@)MBAPOSS.
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Figure S1. The thermogravimetric analysis of a) OBAPOSS and b) MBAPOSS.
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Figure S2. FT-IR spectra of a) T, b) NH2-POSS, ¢) MBAPOSS and d)
Tb@MBAPOSS.

As shown in Figure S2, the FT-IR spectra of all the samples show peaks at 3000-
2800 and 1460-1300 cm™!, which can be assigned to the stretching and bending modes
of the isobutyl moieties. In addition, an intense peak at 1110 cm! can be attributed to
asymmetric stretching of Si-O-Si, and the band at 802 cm! can be assigned to Si-C
rocking. The FT-IR spectra of T (Figure S2a) show two bands at 3250 and 890 cm’!
may be assigned to stretching and bending of Si-OH, respectively, which were no
longer seen in the IR spectrum of NH,-POSS, indicating that the cage was completely
condensed. In addition, a intense peak at about 1641 cm! assigned to the C=N

stretching can be observed in MBAPOSS and Tb@MBAPOSS spectrum (Figure S2
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c&d). In addition, the bands at 1684 cm! belong to stretching vibrations of carboxyl
in MBAPOSS. After coordinated with Tb3", the characteristic stretching vibrations of
carboxyl at 1684 cm!' almost completely disappeared. This phenomenon indicates

that the Tb" is successfully coordinated to OBAPOSS.
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Figure S3. Decay curve of Tbh@OBAPOSS (red line), Tbh@MBAPOSS (blue line)

and Tb(BA); (black line) measured at room temperature using an excitation of 300

nm and monitored at 544 nm, which can be well-fitted by mono-exponential function.
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Figure S4. Changes of emission luminescence spectra of a) Tb(BA);, b)

Tb@MBAPOSS monitored at 544 nm at different exposure time under UV light

irradiation (A¢x = 300 nm).
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Table S1. Changes of decay time of the D, state of Tb(BA);, Th@MBAPOSS and
Tb@OBAPOSS under UV irradiation

Time /h 0 4 8 12 16 20
TTh(BA)3/MS 0.51 0.54 0.50 0.44 0.40 0.37
TTb@MBAPOSS/MS 0.54 0.49 0.48 0.49 0.50 0.49
TTb@OBAPOSS/MS 0.91 0.92 0.91 0.90 0.89 0.90

Table S2. Changes of the quantum yield of Tb(BA);, Tb@MBAPOSS and
Tb@OBAPOSS under UV irradiation

Time / h 0 4 8 12 16 20
D1,pay/ms 25.3% 24.5% 22.1% 20.9% 18.2% 16.3%
Drpgvparossms  31.4% 30.2% 30.8% 29.1% 29.7% 28.9%
Drpgoparossms  39.8% 39.2% 40.1% 39.0% 39.5% 39.0%
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Figure S5. Changes of emission luminescence spectra of a) Tb(BA);, b)

Tb@MBAPOSS monitored at 544 nm at different exposure time at 120 °C (A =300

nm).
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Figure S6. The P-XRD of a) Tb@MBAPOSS and b) Tb@OBAPOSS after 20h-UV-
irradiation and heating at 120 °C for 20 h.
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