Investigation of luminescence properties and the energy transfer mechanism of tunable emitting $Sr_3Y_2(Si_3O_9)_2$:Eu²⁺, Tb³⁺ phosphors

Mengfei Zhang^{a, b, c}, Yujun Liang^{a, b},* Shuangyu Xu^b, Yingli Zhu^b, Xingya Wu^b, Shiqi

Liu^b

^aEngineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, People's Republic of China
^bFaculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
^cState Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China

*Corresponding author at: Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

Tel.: +86 27 67884814; fax: +86 27 67883733.

E-mail address: yujunliang@sohu.com

Figure S1. The excitation spectra of SYSO: $0.01Eu^{2+}$. ($\lambda_{em} = 463$ nm, $\lambda_{em} = 489$ nm, $\lambda_{em} = 521$ nm)

Figure S2. The PL spectra of SYSO:0.01, 0.21Tb³⁺ (black line), SYSO:0.21Tb³⁺ (red line).

S-Table 1 The integrate intensity and ratio of the Gaussian peaks fitting of SYSO: xEu^{2+} in 463 nm, 489 nm, and 521 nm.

x	463 nm	489 nm	521 nm	ratio
0.006	32641	33625	12084	1:1.03:0.37
0.008	38525	42445	14973	1:1.10:0.39
0.01	74212	83307	28020	1:1.12:0.38
0.03	29274	41292	18726	1:1.41:0.64
0.05	10731	24186	12100	1:2.25:1.13
0.07	6981	15667	8353	1:2.24:1.20