Supporting Information for

A serials of Zn(II) and Cd(II) coordination compounds based on 4-(4*H*-1,2,4-triazol-4-yl)benzoic acid: synthesis, structure and photoluminescent properties

Li-Bo Yang, Hong-Can Wang, Xiao-Dan Fang, Si-Jin Chen, Quan-Qing Xu, Ai-Xin Zhu* and Zhi Yang*

Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.

E-mail: zaxchem@126.com (A.-X. Zhu); kmyangz@hotmail.com (Zhi. Yang).

Fig. S1 PXRD of 1.

Fig. S2 PXRD of 2.

Fig. S3 PXRD of 3.

Fig. S4 PXRD of 4.

Fig. S5 PXRD of 5.

Fig. S6 PXRD of 6.

Fig. S7 PXRD of 7.

Fig. S8 View of the 3D supramolecular network through the C-H…O weak interactions in **1** along the *a*-axis.

Fig. S9 The coordination environments of the zinc atom and the 4-tba ligand in **2**. Symmetric codes: A: -x, -y, -z; B: x-1, -y+1/2, z-1/2; C: x+1, -y+1/2, z+1/2.

Fig. S10 The 3-connected 4.8² topology in **2** when Zn and 4-tba are regarded as two kinds of 3-connected nodes.

Fig. S11 View of the 3D supramolecular network through the C-H \cdots O weak interactions in 2 along the *c*-axis.

Fig. S12 View of π - π stacking interactions in **2**.

Fig. S13 View of π - π stacking interactions in **3**. The 2-fold interpenetrating 2D layers are shown different color and hydrogen atoms are omitted for clarity.

Fig. S14 View of the 3D framework and channel structure of 4 along the *b*-axis.

Fig. S15 A single diamond motif in 5.

Fig. S16 View of the 3D framework and channel structure of 5 along the *b*-axis.

Fig. S17 A single diamond motif in 6.

Fig. S18 Topological representation of the10-nodal (3,3,3,4,4,4,5,6,6,6)-connected net of 7.

Figure S19. TG curve of compound **4'** synthesized by slow evaporation of the filtrate of 3. The weight loss of 13.35% at temperatures below 238 °C is consistent with the removal of one half of free DMF and two water guest molecules per formula unit (calcd 14.11%).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
1				
O(1W')-H(1WA)N(1a)	0.71	2.06	2.746(17)	164.5
O(1W')-H(1WB)N(2b)	0.80	2.04	2.790(17)	155.8
C(4)-H(4A)O(1Wc)	0.93	2.49	3.295(15)	145.3
C(9)-H(9A)O(1d)	0.93	2.40	3.329(4)	174.3
2				
O(3)-H(3)O(2e)	0.82	2.01	2.826(6)	173.3
C(6)-H(6A)O(3b)#5	0.93	2.57	3.496(7)	171.5
C(8)-H(8A)O(3f)#6	0.93	2.25	3.079(7)	147.4
C(9)-H(9A)O(1g)#7	0.93	2.48	2.965(6)	112.8
C(9)-H(9A)O(1e)	0.93	2.47	3.259(7)	142.3

Table S1 The possible hydrogen bonds for compound1 and 2

Symmetry code: (a) -x+1, -y+1, -z+1; (b) x-1, y, z; (c) x+1/2, y+1/2, z; (d) x+1/2, y-1/2, z; (e) x, -y+1/2, z-1/2; (f) x-1, -y+1/2, z+1/2; (g) -x+1, y-1/2, -z+1/2.

type of π - π interactions	centroid-centroid distance (Å)	closest interplanar distance (Å)	offset angle (°)
1			
benzene ring – triazole ring	3.8662	3.342	13.11
benzene ring – benzene ring	4.1349	3.777	0.00
2			
benzene ring – benzene ring	3.7768	3.363	0.49
3			
benzene ring – benzene ring	3.6562	3.505	0.67
4			
triazole ring – triazole ring	4.2493	3.294	0.04
5			
benzene ring – triazole ring	5.2286	2.642	71.59
6			
benzene ring – benzene ring	4.4961	3.320	16.78
7			
benzene ring – triazole ring	4.2252	3.750	16.29

Table S2 The possible π - π interactions in complexes 1-7 calculated by program PLATON.^{S1}

Topology Analysis of compound 7 by using TOPOS software.^{S2}

Topolo	ogy for Cl1					
Atom	Cl1 links by	bridge ligar	nds and has			
Comm	on vertex w	ith			R(A-A)	
Cd 3	0.1675	1.0053	0.4832	(010)	2.496A	1
Cd 2	0.1763	0.8119	0.4083	(000)	2.586A	1
Cd 3	-0.1675	0.9947	0.5168	(011)	2.912A	1
Topolo	ogy for Sc1					
Atom	Sc1 links by	bridge ligar	nds and has			
Comm	on vertex w	ith			R(A-A)	
Cd 1	0.1746	-0.2232	0.2481	(0-10)	5.339A	1

Cd 2	0.1763	-0.1881	0.4083	(0-10)	5.457A	1
Cr 1	0.1651	0.5286	0.0038	(000)	7.238A	1
Topol	ogy for Ti1					
Atom	 Ti1 links bv	bridge liga	nds and has			
Comn	non vertex w	rith			R(A-A)	
Co 1	0.2055	0.7068	0.0765	(000)	6.293A	1
Cd 1	0.1746	0.7768	0.2481	(000)	6.402A	1
Cr 1	1.1651	0.5286	0.0038	(100)	6.502A	1
Co 1	1 2055	0 7068	0 0765	(100)	6 736A	1
Topol	ogy for Ti2	0.,000	0.0700	(100)		-
Atom	 Ti2 links by	bridge liga	nds and has			
Comn	non vertex w	vith	ius and nus		R(A-A)	
Cd 3	0 1675	0.0053	0 4832	(000)	6 274A	1
	0.1075	0.7068	0.0765	(000)	6.409A	1
Cd 1	0.2035	0.7768	0.0703	(000)	6 501A	1
Topol	ogy for Ti3	0.7700	0.2401	(000)	0.00111	1
Atom	Ti3 links by	bridge ligar	nds and has			
Comn	non vertex w	rith			R(A-A)	
Cd 3	0.1675	1.0053	0.4832	(010)	6.407A	1
Cd 2	0.1763	0.8119	0.4083	(000)	6.449A	1
Cd 1	1.1746	0.7768	0.2481	(100)	6.528A	1
Cd 2	1.1763	0.8119	0.4083	(100)	6.541A	1
Topol	ogy for Cr1					
Atom	 Cr1 links by	v bridge liga	nds and has	5		
Comn	non vertex w	rith			R(A-A)	
Co 1	0.2055	0.7068	0.0765	(000)	4.136A	1
Ti 1	-0.3267	0.7100	0.1099	(-1 0 0)	6.502A	1
Sc 1	0.1760	0.0991	0.2052	(000)	7.238A	1
Cd 2	0.1763	0.8119	-0.5917	(00-1)	12.394A	1
Topol	ogy for Co1			()		
Atom	 Col links by	y bridge liga	nds and ha	s		
Comn	non vertex w	rith		-	R(A-A)	
Cr 1	0 1651	0 5286	0.0038	(000)	4 136A	1
Cd 1	0 1746	0 7768	0 2481	(000)	4.266A	1
Ti 1	0.6733	0.7100	0.1099	(000)	6.293A	1
Ti 2	0 1690	0 3811	0 3222	(000)	6 409A	1
Ti 1	-0 3267	0 7100	0 1099	(-100)	6 736A	1
Cd 3	0 1675	1 0053	-0 5168	(0.1-1)	12.458A	1
Topol	ogy for Cd1	1.0000		(***)		

Atom Cd1 links by bridge ligands and has

Comm	non vertex w	vith			R(A-A)		
Cd 2	0.1763	0.8119	0.4083	(000)	3.805A	1	
Co 1	0.2055	0.7068	0.0765	(000)	4.266A	1	
Sc 1	0.1760	1.0991	0.2052	(010)	5.339A	1	
Ti 1	0.6733	0.7100	0.1099	(000)	6.402A	1	
Ti 2	0.1690	0.3811	0.3222	(000)	6.501A	1	
Ti 3	-0.3323	0.8429	0.8429 0.3917 (-1 0 0)			1	
Topol	ogy for Cd2						
Atom	 Cd2 links b	v bridge liga	ands and ha	s			
Comn	non vertex w	vith		-	R(A-A)		
Cl 1	0.0554	0.9195	0.4681	(000)	2.586A	1	
Cd 1	0.1746	0.7768	0.2481	(000)	3.805A	1	
Sc 1	0.1760	1.0991	0.2052	(010)	5.457A	1	
Ti 3	0.6677	0.8429	0.3917	(000)	6.449A	1	
Ti 3	-0.3323	0.8429	0.3917	(-1 0 0)	6.541A	1	
Cr 1	0.1651	0.5286	1.0038	(001)	12.394A	1	
Topol	ogy for Cd3			× ,			
Atom	Cd3 links by	y bridge liga	nds and ha	S			
Comm	non vertex w	vith			R(A-A)		
Cl 1	0.0554	-0.0805	0.4681	(0-10)	2.496A	1	
Cl 1	-0.0554	0.0805	0.5319	(011)	2.912A	1	
Ti 2	0.1690	0.3811	0.3222	(000)	6.274A	1	
Ti 3	0.6677	-0.1571	0.3917	(0-10)	6.407A	1	
Co 1	0.2055	-0.2932	1.0765	(0-11)	12.458A	1	
Structural group analysis							

Structural group No 1

Structure consists of 3D framework with Cd3CoCrTi3ScCl

Coordination sequences

Cl1:	1	2	3	4	5	6	7	8	9	10
Num	3	11	25	59	105	173 2	38 31	7 43	32 5	51
Cum	4	15	40	99	204 3	377 6	15 93	2 1 3 6	4 191:	5
Sc1:	1	2	3	4	5	6	7	8	9	10
Num	3	10	26	58	99	1692	235 33	31 4	19 5	549
Cum	4	14	40	98	197 3	366 6	01 93	2 1 3 5	1 190	0
Ti1:	1	2	3	Z	1 5	5 6	5 7	8	9	10

Ti3 Point symbol: {3.4.6^2.7^2} Extended point symbol: [3.4.6.6.7.7(2)] _____ Cr1 Point symbol: {3.5.6.7.8²} Extended point symbol: [3.8.5(2).8(6).6(3).7(2)] _____ Co1 Point symbol: {3^3.4.5.6^3.7^6.8} Extended point symbol: [3.3.3.4.5(2).6.6.6(2).7.7.7.7.7(2).8] _____ Cd1 Point symbol: {3^4.4^2.6^2.7^4.8^2.9} Extended point symbol: [3.3.3.3.4.4.6.6.7.7.7(2).7(2).8(3).8(3).9(4)] _____ Cd2 Point symbol: {3^2.4^2.5^2.6^2.7^4.8^3} Extended point symbol: [3.3.4.4.5.5.6.6.7.7.7.7(2).8(2).8(2).8(2)] _____ Cd3 Point symbol: {4^2.5^2.6.7^3.8.9} Extended point symbol: [4.4.5.5.6.7.7.7.8(2).9] -----Point symbol for net: {3.4.6^2.7^2} {3.5.6.7.8^2} {3.7.8} 2 {3^2.4^2.5^2.6^2.7^4.8^3} {3^2.6^2.7^2} {3^3.4.5.6^3.7^6.8} {3^4.4} ^2.6^2.7^4.8^2.9} {4^2.5^2.6.7^3.8.9} {4^2.6}

3,3,3,4,4,4,5,6,6,6-c net with stoichiometry (3-c)(3-c)(4-c)(4-c)(4-c)(5-c)(6-c)(6-c)(6-c); 10-nodal net

References

S1 A. L. Spek, PLATON, Utrecht University: Utrecht, The Netherlands, 2003.

S2 The network topology was evaluated by the program TOPOS-4.0; see http://www.topos.ssu.samara.ru.

V. A. Blatov, IUCr CompComm Newsletter, 2006, 7, 4.