ELECTRONIC SUPPLEMENTARY INFORMATION

Hydrogen bonding induced conformational change in crystalline sugar derivative

Kumar Bhaskar Pal, Vikramjit Sarkar, BalaramMukhopadhyay*

Indian Institute of Science Education and Research-Kolkata, Mohanpur Campus, Nadia: 741252, India.

Content

Synthetic scheme Synthesis, purification and NMR Characterization of compound **1**, **2** and **3**

Powder X-Ray Diffraction

Plot of gel-sol transition temperature (T_{gel}) of compound 1

Dynamic rheology of the organogel

Crystallographic data and Structure Refinement Parametersfor the galactosides1, 2 and 3 Table of Intermolecular and intramolecular interactions in the crystal structure of galactoside1 Table of Intermolecular and intramolecular interactions in the crystal structure of galactoside2 Table of Intermolecular and intramolecular interactions in the crystal structure of galactoside3 NMR spectra of compounds 1, 2 and 3

Synthetic scheme:

Scheme S1: Synthesis of the compounds 2 and 3. Reagents and condition: a) Acetone, H₂SO₄-silica, rt b) Et₃N, BzCN, rt

Synthesis, purification and NMR Characterization:

p-tolyl-1-thio-β-D-galactopyranoside (1):

Compound 1 was synthesized following the literature procedure.¹

[α]_D²⁵ +121 (c 1.1, CH₃OH). ¹H NMR (CD₃OD, 500 MHz) δ: 7.44, 6.88 (2 dd, 4H, *J* 6.5 Hz, ArH), 4.52 (d, 1H, $J_{1,2}$ 9.5 Hz, H-1), 3.89 (dd, 1H, $J_{3,4}$, $J_{4,5}$ 3.0 Hz, H-4), 3.76 (dd, 1H, $J_{5,6a}$ 6.5 Hz, $J_{6a,6b}$ 11.5 Hz, H-6a), 3.70 (dd, 1H, $J_{5,6b}$ 5.5 Hz, $J_{6a,6b}$ 11.5 Hz, H-6b), 3.59 (t, 1H, $J_{1,2}$ 9.5 Hz, $J_{2,3}$ 9.0 Hz, H-2), 3.53 (t, 1H, *J* 6.5 Hz, H-5), 3.50 (dd, 1H, $J_{2,3}$ 9.0 Hz, $J_{3,4}$ 3.0 Hz, H-3), 2.28 (s, 3H, S-C₆H₄-CH₃). ¹³C NMR (CD₃OD, 125 MHz) δ: 138.2, 132.7(2), 131.9, 130.4(2), 90.4 (C-1), 80.3 (C-5), 76.1 (C-3), 70.9 (C-2), 70.2 (C-4), 62.4 (C-6), 21.0 (S-C₆H₄-CH₃). HRMS calcd. for C₁₃H₁₈O₅SNa (M⁺Na)⁺: 309.0773, found: 309.0771.

p-tolyl-3,4-*O*-isopropylidene-1-thio-β-D-galactopyranoside (2):

Compound 2 was synthesized following the literature procedure.²

 $[\alpha]_D^{25}$ +103 (c 1.0, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ : 7.41, 7.09 (2 dd, 4H, *J* 6.5 Hz, ArH),4.39 (d, 1H, *J*_{1,2}10.0 Hz, H-1), 4.13 (dd, 1H, *J*_{3,4} 5.5, *J*_{4,5} 2.0 Hz, H-4), 4.43 (dd, 1H, *J*_{2,3} 7.0 Hz, *J*_{3,4} 5.5 Hz, H-3), 3.94 (dd, 1H, *J*_{5,6a}7.0 Hz, *J*_{6a,6b}11.0 Hz,H-6a), 3.77 (m, 1H, H-5), 3.62 (dd, 1H, *J*_{5,6b}6.0 Hz, *J*_{6a,6b}11.0 Hz,H-6a), 3.52 (m, 1H, H-2), 2.90, 2.55 (2 bs, 2H, 2×OH), 2.30 (s, 3H, S-C₆H₄-CH₃), 1.39, 1.30 (2s, 6H, C(CH₃)₂). ¹³C NMR (CDCl₃, 125 MHz) δ : 138.2, 132.8(2), 129.7(2), 128.0, 110.3 [*C*(CH₃)₂], 87.8 (C-1), 79.1 (C-3), 76.9 (C-5), 73.7 (C-4), 71.3 (C-2), 62.4 (C-6), 27.9, 26.2 [C(CH₃)₂], 21.0 (S-C₆H₄-CH₃). HRMS calcd. for C₁₆H₂₂O₅SNa (M⁺Na)⁺: 349.1086, found: 349.1083.

p-tolyl-6-*O*-bezoyl-3,4-*O*-isopropylidene-1-thio-β-D-galactopyranoside (3):

To a solution of **3** (3.0g, 7.66 mmol) in CH₃CN (30 mL), BzCN (0.91 mL, 7.66 mmol) was added followed by Et₃N (0.1 mL) and the mixture was stirred at 0–5 °C for 10 min until the starting material had completely disappeared (TLC) and the excess BzCN was neutralized with MeOH. Then organic solvent was removed directly under reduced pressure.Further purification was achieved on a flash chromatography with silica gel and *n*-hexane: EtOAc (2:1) with a high yield (3.0g, 92%) of the desired compound**3**. $[\alpha]_D^{25}$ +87 (c 1.0, CHCl₃). ¹H NMR (CDCl₃, 500 MHz) δ : 8.05-6.88 (m, 9H, ArH), 4.63 (dd, 1H, $J_{5,6a}$ 4.0 Hz, $J_{6a,6b}$ 12.0 Hz, H-6a), 4.57 (dd, 1H, $J_{5,6b}$ 8.5 $J_{6a,6b}$ 12.0 Hz, H-6b), 4.43 (d, 1H, $J_{1,2}$ 10.0 Hz, H-1), 4.23 (dd, 1H, $J_{3,4}$ 5.5 Hz, $J_{4,5}$ 2.5 Hz, H-4), 4.10 (m, 2H, H-3, H-5), 3.62 (t, 1H, $J_{2,3}$ 10.0 Hz, $J_{3,4}$ 8.0 Hz, H-2), 3.03 (bd, 1H, $J_{2,0H}$ 1.5 Hz, OH), 2.22 (s, 3H, S-C₆H₄-CH₃), 1.46, 1.34 [2s, 6H, C(CH₃)₂]. ¹³C NMR (CDCl₃, 125 MHz) δ : 166.1 (COC₆H₅), 137.8, 133.0, 132.5(2), 129.7(2), 129.6, 129.4(2), 128.6(2), 128.2(2) (ArC), 110.3 (C(CH₃)₂), 88.1 (C-1), 79.1 (C-3), 74.2 (C-5), 73.4 (C-4), 71.5 (C-2), 64.0 (C-6), 27.8, 26.1 [C(CH₃)₂], 20.9 (S-C₆H₄-CH₃). HRMS calcd. for C₂₃H₂₆O₆SNa (M⁺Na)⁺: 453.1348, found: 453.1345.

Powder X-Ray Diffraction (PXRD): The PXRD patterns of compound **1**, **2** and **3** in different states, bulk solid, xerogel and precipitate, were collected on a Rigaku SmartLab with a Cu K α radiation (1.540 Å). The tube voltage and amperage were set at 40 kV and 50 mA respectively. Each sample was scanned between 2° and 50° (2 θ) with a step size of 0.02°. The instrument was previously calibrated using a silicon standard.

Figure S1: Plot of gel-sol transition temperature (T_{gel}) against gelator concentration of 1,3dichlorobenzene gel of compound **1**

Figure S2:Dynamic rheology of the organogel containing 1.2% w/v compound **1** in (a) 1,2-dichlorobenzene, (b) chlorobenzene and (c) bromobenzene as a function of angular frequency (rad s^{-1}) at 15 °C

(b)

Crystals	1	2	3
Empirical formula	$C_{13}H_{18}O_5S$	$2(C_{16}H_{22}O_5S), H_2O$	$\mathrm{C}_{23}\mathrm{H}_{26}\mathrm{O}_{6}\mathrm{S}$
Formula weight	286.33	670.81	430.50
Colour	colourless	colourless	colourless
Crystal morphology	block	needle	rod
Crystal system	monoclinic	monoclinic	orthorhombic
Space group	<i>P</i> 2 ₁	P2 ₁	$P2_{1}2_{1}2_{1}$
T/K	292 K	100 K	100 K
<i>a</i> /Å	5.1361(3)	11.1679(8)	5.8253(7)
<i>b</i> /Å	8.6117(5)	7.7832(5)	8.3302(5)
<i>c</i> /Å	15.7890(8)	19.3582(13)	42.609(2)
a/°	90	90	90
β/°	96.403(5)	100.192(7)	90
γ/°	90	90	90
Z	2	2	4
V/Å ³	694.00(7)	1656.09(19)	2067.6(3)
$D_{\rm calc}/{\rm g~cm}^{-3}$	1.370	1.345	1.383
μ/mm^{-1}	0.246	0.220	0.195
F (000)	304.0	716.0	912.0
θ (min, max)	2.587, 27.312	1.955, 25.611	2.486, 27.512
Reflections collected	2594	7409	5264
Unique reflections	2029	5657	3638
Observed reflections	1906	4532	3363
$R_1[I > 2\sigma(I)]$	0.109	0.069	0.051
wR ₂ [all]	0.042	0.137	0.105
Goodness-of-fit	1.088	1.046	1.169
Value of Flack parameter	0.02(9)	-0.01(10) 0.02(13)	
CCDC	1052160	1411666	1052154

 Table S1. Crystallographic data and Structure Refinement Parameters for the galactosides1, 2

 and 3

Crystal	D-H···A	D-H	Н…А	D····A	D –H···A	Symmetry codes
		(Å)	(Å)	(Å)	(°)	
1	О–Н…О					
	O2–H2…O4	0.82	2.01	2.798(3)	160	$-1 - x$, $\frac{1}{2} + y$, $-z$
	O3–H3…O5	0.82	2.02	2.825(3)	166	$-x, \frac{1}{2}+y, -z$
	O4–H4…O3	0.82	1.95	2.746(3)	164	$-1 - x, -\frac{1}{2} + y, -z$
	O5–H5…O2	0.82	2.07	2.763(3)	142	x, -1+y,z
	O−H…O					
	O2-H2…O11	0.84	1.95	2.667(5)	143	x, -1+y,z
	O5–H5…O2	0.84	1.90	2.724(5)	167	x, 1 + y, z
	07–H7A…O5	0.84	1.86	2.691(6)	171	$-x, -\frac{1}{2} + y, -1 - z$
	O10-H10A…O7	0.84	1.93	2.759(5)	168	x, 1 + y, z
	011–H11A…01	0.85	2.16	2.994(5)	169	—
	O11-H11B…O10	0.85	1.95	2.803(5)	177	$-1 - x, -\frac{1}{2} + y, -1$
2						- Z
	С–Н…О					
	C12–H12A…O3	0.98	2.46	3.366(6)	154	$-1 - x$, $\frac{1}{2} + y$, $-1 - 1$
	С22-Н22…Об	0.95	2.52	3.222(5)	131	Z
	(intra)					—
	С17-Н17А…О5	0.98	2.53	3.468(6)	160	
	С29–Н29А…О9	0.98	2.45	3.341(5)	151	x,y, −1+z
						$-x, -\frac{1}{2} + y, -1 - z$
	O−H…O					
	O2–H2…O1	0.82	2.06	2.858(3)	165	-1 + x, y, z
	С–Н…О					
3	C15–H15…O2(intra)	0.98	2.46	2.937(4)	110	—
	C23–H23···O5(intra)					
		0.93	2.41	2.728(5)	100	—

Table S2. Inter-molecular and intra-molecular interactions in the crystal structure ofgalactoside1, 2 and 3

Reference:

 ⁽a) B. Yang, K. Yoshida, Z. Yin, H. Dai, H. Kavunja, M. H. El-Dakdouki, S. Sungsuwan, S. B. Dulaney, X. Huang, Angew. Chem. Int. Ed., 2012, 51, 10185-10189; (b) K.-K.T. Mong and C.-H. Wong, Angew. Chem. Int.

Ed., 2002, **41**, 4087-4090; (c) M. Wilstermann, J. Balogh, G. Magnusson, *J. Org. Chem.*, 1997, **62**, 3659-3665;
(d) C.-M. Huang, R.-S. Liu, T.-S. Wuc, W.-C. Cheng, *Tetrahedron Lett.*, 2008, **49**, 2895-2898; (e) C. Wang, Q. Li, H. Wang, L.-H. Zhang and X.-S. Ye, *Tetrahedron*, 2006, **62**, 11657-11662; (f) M.-Y. Chen, L. N. Patkar, K.-C. Lu, A. S.-Y Lee, C.-C. Lin, *Tetrahedron*, 2004, **60**, 11465–11475.

 (a) A. K. Choudhury, N. Roy, J. Carbohydr. Chem., 1997, 16, 1363-1371; (b) N. Khiar, B. Suárez, M. Stiller, V. Valdivia, I. Fernández, Synlett, 2005, 180, 1253-1258.

S11

