Electronic Supplementary Information (ESI)

Epitaxial growth of orthorhombic NaTaO₃ crystals on SrTiO₃ (100) surface by flux coating

Sayaka Suzuki,^a Hajime Wagata,^a Kunio Yubuta,^b Shuji Oishi,^a Katsuya Teshima^{*,a,c}

^a Department of Environmental Science and Technology, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

^b Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

^c Center for Energy and Environmental Science, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

E-mail: teshima@shinshu-u.ac.jp *Corresponding Author: Katsuya Teshima

Experimental

NaTaO₃ crystals were grown on a single-crystalline SrTiO₃ (100) substrate in a twostep process: sputter deposition of a tantalum oxide (TaO_x) thin film as a Ta source for NaTaO₃, and its subsequent conversion into NaTaO₃. First, a TaO_x thin film was deposited on the SrTiO₃ (100) substrate (10 × 10 × 0.5 mm³, Shinkosha Co., Ltd.) by sputtering, using Ta (Furuya Metal Co., Ltd.) as a target and a simple magnetron sputtering system (JFC-1600, JEOL) under an Ar atmosphere. Next, a 2 M NaNO₃ solution was prepared using reagent-grade NaNO₃ powder (99.0%, Wako Pure Chemical Industries, Ltd.); 10 μ L of this solution was placed on the TaO_x/SrTiO₃, which had been dry-cleaned and hydrophilized by irradiation under vacuum-ultraviolet light ($\lambda = 172$ nm) from a xenon excimer lamp (UER172-200, Ushio Inc.). The solution-coated TaO_x/SrTiO₃ was dried in an electric oven at 100 °C for 30 min. The substrates were placed in a Pt case and covered with an alumina plate. The Pt case was heated to 600 °C at a rate of 100 °C·min⁻¹ in an infrared heating furnace and then naturally cooled to room temperature in the furnace without holding the temperature. The products were immersed in warm water to remove any residual NaNO₃.

The TaO_x/SrTiO₃ and NaTaO₃/SrTiO₃ samples were examined by field-emission scanning electron microscopy (FESEM; SU8000, Hitachi) and transmission electron microscopy (TEM; EM-002B, Topcon and JEM-2010, JEOL). The elemental composition was investigated using an X-ray photoelectron spectrometer (XPS; JPS-9010MX, JEOL), energy-dispersive X-ray spectrometer (EDS; attached to a transmission electron microscope/scanning transmission electron microscope (TEM/STEM; JEM-2800, JEOL)), and X-ray diffractometer (XRD; SmartLab and MiniflexII, Rigaku) with Cu-K α radiation (λ = 0.154 nm). The samples for cross-sectional observations were prepared using a focused ion beam (FIB) system (JIB-4000, JEOL).

Figure S1. (a) Low- and (b) high-magnification cross-sectional TEM images of $TaO_x/SrTiO_3$.

Figure S2. (a) Digital photograph of TaO_x/SrTiO₃.

Figure S3. XPS spectra of TaO_x thin film deposited on an Al₂O₃ substrate. The TaO_x thin film was also deposited on a sapphire substrate at the same time with a SrTiO₃ substrate.

Figure S4. (a) XRD pattern obtained from $2\theta/\theta$ scan of NaTaO₃/SrTiO₃. (b) XRD pattern obtained from 2θ scan ($\omega = 1.0^{\circ}$) of the SrTiO₃ substrate. XRD patterns of (c) NaTaO₃ (ICDD PDF data) and (d) SrTiO₃ (ICDD PDF data).

Figure S5. Illustrations of the growth mechanism of NaTaO₃ crystals from NaNO₃ and TaO_x/SrTiO₃. This figure shows the growth mechanism of epitaxially grown NaTaO₃ crystals rather than non-oriented ones.

Figure S6. Cross-sectional TEM image of a disordered NaTaO₃ crystal grown on SrTiO₃ substrate. Au particles were deposited on NaTaO₃/SrTiO₃ before TEM observation in order to prevent the charging.

Figure S7. (a) Bright-field TEM image and (b–d) the corresponding SAED patterns of NaTaO₃/SrTiO₃. The incident electron beam was parallel to the [010] direction of SrTiO₃.

Figure S8. Schematic illustration of NaTaO₃ crystal bounded by $\{010\}$, $\{10-1\}$, $\{001\}$, and $\{100\}$ faces.

Figure S9. Schematic crystal structures of orthorhombic NaTaO3 and cubic SrTiO3.

Figure S10. Schematic crystal structures of orthorhombic NaTaO₃ (10-1) face and cubic SrTiO₃ (100) face.