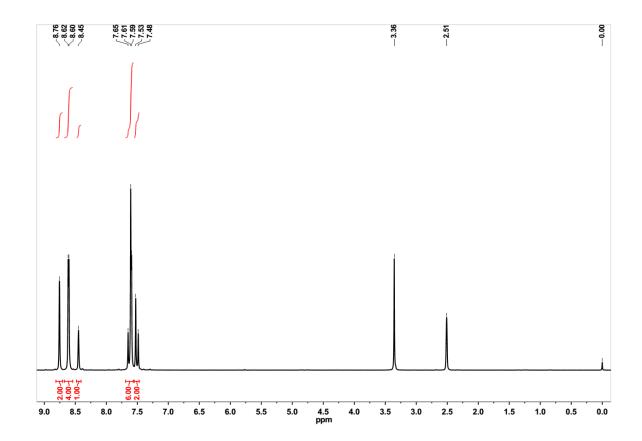

Electronic Supplementary Information (ESI)


Yi-Xiang Shi, Fei-Long Hu, Wen-Hua Zhang*a and Jian-Ping Lang*a,b

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. Fax: 86-512-65880328; E-mail: jplang@suda.edu.cn; whzhang@suda.edu.cn

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.

Contents

Fig. S1	The ¹ H NMR spectrum of the bpvp ligand
Fig. S2	The TGA curve for 1
Fig. S3	The emission spectra of 1 in H ₂ O with the addition of different concentrations of 4-NA excited at 285
nm. ·····	S4
Fig. S4	The emission spectra of 1 in H ₂ O with the addition of different concentrations of 4-NP excited at 285
nm. ·····	S4
Fig. S5	The Stern-Volmer curve of ${\bf 1}$ in H_2O with the addition of different concentrations of 2,4-DNP. $\cdots S4$
Fig. S6	The Stern-Volmer curve of ${\bf 1}$ in H_2O with the addition of different concentrations of 4-NAS5
Fig. S7	The Stern-Volmer curve of ${\bf 1}$ in H_2O with the addition of different concentrations of 4-NP
Fig. S8	The emission spectra of 1 in H ₂ O with the addition of different concentrations of acetone excited at 285
nm. ·····	······S5
Fig. S9	The PXRD patterns of 1 after six cycles experiment for the detection of 2,4-DNP86
Fig. S10	The PXRD patterns of 1 after six cycles experiment for the detection of <i>p</i> -BQS6
Fig. S11	Spectral overlap between the absorption spectrum of nitroaromatics or ketones (2 \times 10 ⁻⁵ mol L ⁻¹) in
water and	d the emission spectrum of 1 (2 mg) in 2 mL of water
Table S1	Selected bond lengths (Å) and angles (°) for 1
Table S2	The hydrogen bonding with the protonated pyridyl end in the Hbpvp ⁺ ligand [Å and]S7

Fig. S1 The ${}^{1}H$ NMR spectrum of the bpvp ligand.

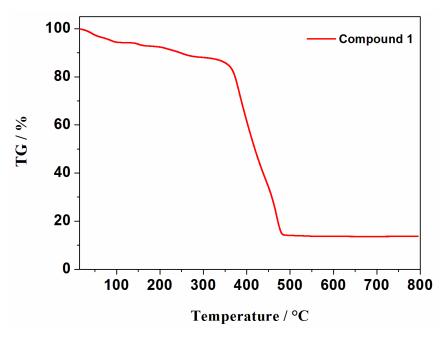
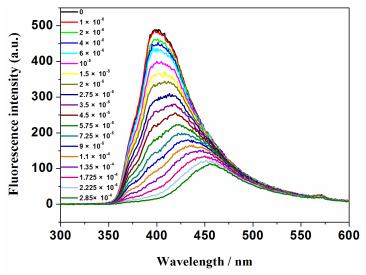
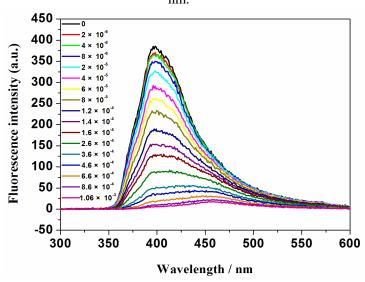




Fig. S2 The TGA curve of 1.

Fig. S3 The emission spectra of **1** in H₂O with the addition of different concentrations of 4-NA excited at 285 nm.

Fig. S4 The emission spectra of **1** in H₂O with the addition of different concentrations of 4-NP excited at 285 nm.

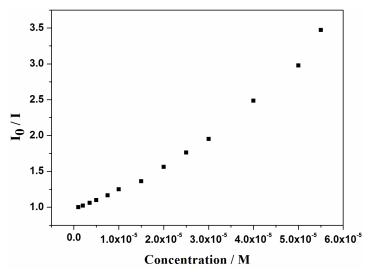
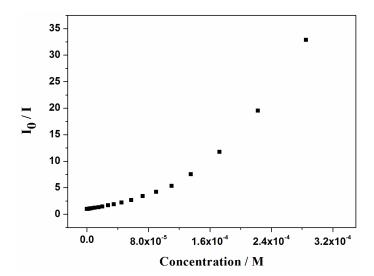



Fig. S5 The Stern-Volmer curve of 1 in H_2O with the addition of different concentrations of 2,4-DNP.

Fig. S6 The Stern-Volmer curve of $\mathbf{1}$ in H_2O with the addition of different concentrations of 4-NA.

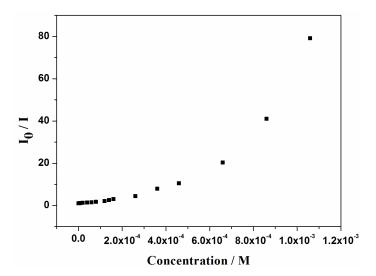


Fig. S7 The Stern-Volmer curve of 1 in H₂O with the addition of different concentrations of 4-NP.

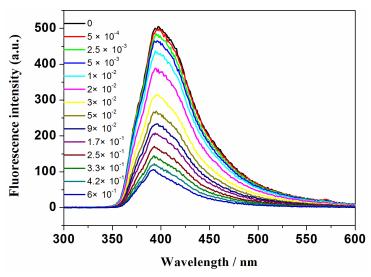


Fig. S8 The emission spectra of 1 in H_2O with the addition of different concentrations of acetone excited at 285 nm.

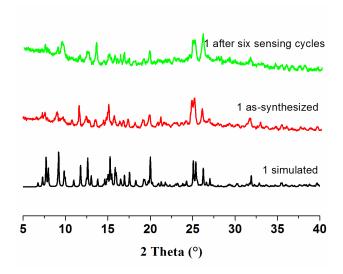


Fig. S9 The PXRD patterns of 1 after six cycles experiment for the detection of 2,4-DNP.

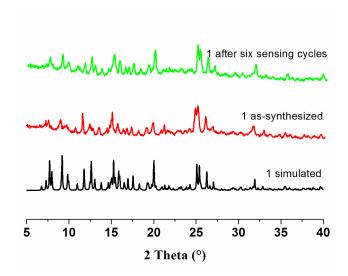
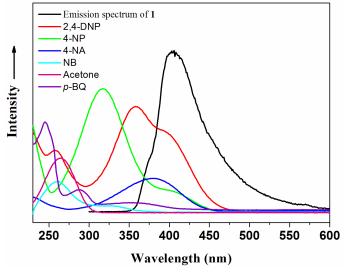



Fig. S10 The PXRD patterns of 1 after six cycles experiment for the detection of p-BQ.

Fig. S11 Spectral overlap between the absorption spectrum of nitroaromatics or ketones $(2 \times 10^{-5} \text{ mol L}^{-1})$ in water and the emission spectrum of 1 (2 mg) in 2 mL of water.

Table S1. Selected bond lengths (Å) and angles () for 1

Zn(1)-O(7)	2.005(3)
Zn(1)-O(13)	2.021(3)
Zn(1)-N(1)	2.031(3)
Zn(1)-O(1)	2.055(3)
Zn(1)- $Zn(2)$	3.0093(7)
Zn(2)-O(8)	2.025(3)
Zn(2)-N(4)#1	2.033(3)
Zn(2)-O(2)	2.034(3)
Zn(2)-O(14)	2.045(3)
Zn(3)-O(1W)	2.047(3)
Zn(3)-N(5)	2.092(4)
Zn(3)-O(4)	2.259(3)
Zn(3)-O(17)#2	2.276(3)
Zn(4)-O(5)#1	1.986(3)
Zn(4)-O(9)	2.023(3)
Zn(4)-O(2W)	2.027(3)
Zn(4)-N(2)#3	2.077(3)
Zn(4)-O(10)	2.387(3)
O(7)- $Zn(1)$ - $O(13)$	158.65(12)
O(7)-Zn(1)-N(1)	100.08(13)
O(13)- $Zn(1)$ - $O(1)$	87.53(14)
N(1)- $Zn(1)$ - $O(1)$	99.60(14)
O(7)- $Zn(1)$ - $Zn(2)$	82.65(8)
O(8)-Zn(2)-N(4)#1	101.75(13)
O(8)-Zn(2)-O(2)	88.58(15)
O(2)- $Zn(2)$ - $O(14)$	84.67(15)
N(4)#1-Zn(2)-O(20)	105.72(13)
O(2)- $Zn(2)$ - $O(20)$	156.76(12)
O(1W)-Zn(3)-O(18)#2	95.12(13)
O(1W)-Zn(3)-N(5)	101.70(13)
O(1W)-Zn(3)-O(4)	156.79(11)
N(5)- $Zn(3)$ - $O(4)$	87.09(13)
N(5)-Zn(3)-O(17)#2	96.23(12)
O(5)#1-Zn(4)-O(2W)	100.40(12)
O(2W)-Zn(4)-N(2)#3	98.58(13)
O(9)-Zn(4)- $O(10)$	58.80(11)
O(2W)-Zn(4)- $O(10)$	90.55(11)
N(2)#3-Zn(4)-O(10)	95.95(11)

Symmetry transformations used to generate equivalent atoms for 1: #1: -x + 7/2, y + 1/2, -z + 1/2; #2: -x + 5/2, y - 1/2, -z + 1/2; #3: x + 1, y, z; #4: -x + 7/2, y - 1/2, -z + 1/2; #5: -x + 5/2, y + 1/2, -z + 1/2; #6: x - 1, y, z.

Table S2. The hydrogen bonding with the protonated pyridyl end in the Hbpvp ligand [Å and].

D-HA	d(D-H)	d(DA)	<(DHA)
N(3)-H(3N)O(16) ^a	0.92(2)	2.578(5)	163(6)
N(6)-H(6N)O(12) ^b	0.91(2)	2.651(5)	151(5)

Symmetry transformations used to generate equivalent atoms: a: x - 1, y, z - 1; b: -x + 5/2, y - 1/2, -z - 1/2.