SUPPLEMENTARY INFORMATION

Ameliorated synthetic methodology of crystalline lanthanoidmetalloporphyrin open frameworks based on the multi-topic octacarboxyporphyrin scaffold; structural, gas sorption and photophysical properties¶

Bharat Kumar Tripuramallu, Hatem M. Titi, Sandipan Roy, Roli Verma and Israel Goldberg.

Experimental section

Materials and Methods All the chemicals were received as reagent grade and used without any further purification. The porphyrin building block Zn-H₈OCPP was prepared according to literature procedures.^[1]. Infrared spectra of solid samples were obtained Bruker Tensor 27 system spectrophotometer in ATR mode .Powder X-ray diffraction patterns were recorded on a Bruker D8-Advance diffractometer using graphite monochromated CuK α_1 (1.5406 Å) and K α_2 (1.54439 Å) radiation. Gas adsorption isotherms of Gd-MPF-1 were performed by using Quantachrome gas adsorption analyzer. Photo physical studies were performed through spin coating of the crystalline LnMPFs in toluene solutions on a glass slide. The experiments were done on Horiba scientific FluorEssence spectrophotometer by placing the LnMPF-1 coated glass slide at o° to the detector.

Synthesis of LnMPF-1 (Ln=Gd, Sm, Dy, Eu and Tb). Zn-H₈OCPP (2.5 mg, 0.0025 mmol) and Ln(NO₃)₃.xH₂O (10.0 mg) were dissolved in 500 μ l DMF. The mixture was sealed in a screw cap vial and heated at 120°C in a bath reactor. After two hours 325 μ L of 1N NaOH was added and sonicated for few minutes to obtain a purple turbid solution which was then heated at same temperature for 7 days to obtain a block shaped crystals of LnMPF-1s along with white powder. The crystals were separated by filtration and washed with DMF, acetone and water several times, air dried for further characterizations For GdMPF-1, Yield : ~15 %. FTIR (cm⁻¹): 3367, 2924, 2361, 2084, 1538, 1428, 1369, 995, 775, 712, 418

Crystal Structure Determinations. The X-ray measurements (ApexDuo, Bruker-AXS, MoK α radiation) for the analyzed LnMPF-1 compounds [Ln = Gd (1), Sm (2), Dy (3), Eu (4) and Tb (5)] were carried out at ca. 110(2) K on crystals coated with a thin layer of amorphous oil to minimize crystal deterioration, possible structural disorder and related thermal motion effects, and to optimize the precision of the structural results. Compounds 1-5 are isostructural, exhibiting very similar unit-cell dimensions. Full crystallographic analysis was performed on 1-4; crystals of 5 were of very poor quality and were found unsuitable for independent crystal structure determination. Structures 1-4 were solved by direct methods and refined by full-matrix least-squares (SHELXTL-2014 and SHELXL-2014)^[2] They were found to

contain severely disordered crystallization solvent (DMF) within the intra-lattice voids, which couldn't be modeled by discrete atoms. Correspondingly, the contribution of the disordered solvent moieties was subtracted from the diffraction pattern by the SQUEEZE procedure and PLATON software.^[3] The five-coordinate $Zn(H_2O)$ -OCPP entity was found to exhibit twofold disorder, with the $Zn(H_2O)$ fragment displaced in a given unit either above or below the porphyrin macrocycle. The solvent accessible voids in all four structures are in the range of 58-59% of the crystal volume. Due to the disordered solvent in such wide voids, as well as translational pseudo-symmetry, the analyzed crystals diffracted poorly, revealing additional minor disorder of the porphyrin component. Some of them revealed also non-merohedral twinning. The crystal data for 1-4 are (excluding the lattice-included DMF solvent):

(1) $C_{52}H_{30}Gd_2N_4Na_2O_{21}Zn$, Mr = 1472.65, orthorhombic, space group Imma, a = 27.631(2), b = 29.080(3), c=13.136(1) Å, V = 10555(3) Å³, T = 110 K, Z = 4, μ (MoKa) = 1.519 mm⁻¹, ρ (calcd) = 0.93 g·cm⁻³, 15176 reflections measured to θ = 25.10°, of which 4846 were unique (Rint = 0.054) and 3101 with I > 2 σ (I). Final R1 = 0.065 (wR2 = 0.184) for the 3101 data above the intensity threshold, and R1 = 0.087 (wR2 = 0.196) for all unique data. CCDC 1422227.

(2) $C_{52}H_{30}Sm_2N_4Na_2O_{21}Zn$, Mr = 1458.85, orthorhombic, space group Imma, a = 27.108(4), b = 29.418(3), c=12.972(2) Å, V = 10345(2) Å³, T = 110 K, Z = 4, μ (MoKa) = 1.402 mm⁻¹, ρ (calcd) = 0.94 g·cm⁻³, 19423 reflections measured to θ = 25.09°, of which 4794 were unique (Rint = 0.103) and 1740 with I > 2 σ (I). Final R1 = 0.074 (wR2 = 0.167) for the 1740 data above the intensity threshold, and R1 = 0.160 (wR2 = 0.179) for all unique data. CCDC 1422228.

(3) $C_{52}H_{30}Dy_2N_4Na_2O_{21}Zn$, Mr = 1482.16, orthorhombic, space group Imma, a = 27.1337(11), b = 29.2422(14), c=13.0757(7) Å, V = 10375(5) Å³, T = 110 K, Z = 4, μ (MoKa) = 1.707 mm⁻¹, ρ (calcd) = 0.95 g·cm⁻³, 10069 reflections measured to θ = 25.03°, of which 2528 were unique (Rint = 0.031) and 2088 with I > 2 σ (I). Final R1 = 0.052 (wR2 = 0.146) for the 2088 data above the intensity threshold, and R1 = 0.060 (wR2 = 0.150) for all unique data. CCDC 1422229.

(4) $C_{52}H_{30}Eu_2N_4Na_2O_{21}Zn$, Mr = 1466.13, orthorhombic, space group Imma, a = 27.4347(11), b = 29.9058(12), c=13.1157(7) Å, V = 10401(1) Å³, T = 110 K, Z = 4, μ (MoKa) = 1.472 mm⁻¹, ρ (calcd) = 0.93 g·cm⁻³, 18462 reflections measured to θ =

25.05°, of which 4800 were unique (Rint = 0.076) and 3475 with I > 2σ (I). Final R1 = 0.104 (wR2 = 0.282) for the 3475 data above the intensity threshold, and R1 = 0.122 (wR2 = 0.290) for all unique data. CCDC 1422230.

Fig S1. Projection of 1D zig-zag tubular channels along a, b and c axis (left to right)

Fig S2. The illustration of the topological view of $\{NaGd(H_2O)_2\}$ exhibiting the helical type of chain, which are oriented clock and anti clock wise

Fig S3. Thermogravimetric curve of GdMPF-1

Fig S4. Powder X-ray patterns of GdMPF-1

Fig S5a. Absorbance and emission spectra of Zn-H₈OCPP.

Fig S5b. Excitation, emission spectra (left) and absorption spectra (right) of SmMPF-1

Fig S5c. Excitation, emission spectra (left) and absorption spectra (right) of TbMPF-1

Fig S5d. Excitation and emission spectra GdMPF-1

References

- W. Fudickar, J. Zimmermann, L. Ruhlmann, J. Schneider, B. Rolder, U. Siggel, J.-H. Fuhrhop, J. Am. Chem. Soc. 1999, 121, 9539-9545.
- [2] (a) G. M. Sheldrick, *Acta Cryst.* 2015, A71, 3-8. (b) G. M. Sheldrick, *Acta Cryst.* 2015, C71, 3-8.
- [3] A. L. Spek, Acta Cryst. 2015, C71, 9-18.