Supporting Information

Synthesis, characterization and disorder-order phase transition of inorganic-organic hybrid materials (H₂dabco-CH₂-Cl)[M^{II} Cl₄] (M = Co, Zn)

Chun-Hong Chen, Guan-Cheng Xu*

Key Laboratory of Energy Materials Chemistry (Xinjiang University), Ministry of Education. Key Laboratory of Advanced Functional Materials, Autonomous Region. Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046 Xinjiang, PR China.

Table S1 Hydrogen bonds for $(H_2dabco-CH_2-Cl)[CoCl_4]$ and $(H_2dabco-CH_2-Cl)[ZnCl_4]$ at two temperatures

Fig. S1 IR spectra of (H₂dabco-CH₂-Cl)[CoCl₄] (a) and (H₂dabco-CH₂-Cl)[ZnCl₄] (b).

Fig. S2 PXRD patterns of (H₂dabco-CH₂-Cl)[CoCl₄] (a) and (H₂dabco-CH₂-Cl)[ZnCl₄] (b).

Fig. S3 TG curves of (H₂dabco-CH₂-Cl)[CoCl₄] (a) and (H₂dabco-CH₂-Cl)[ZnCl₄] (b).

Fig. S4 DSC curves of (H₂dabco-CH₂-Cl)[CoCl₄] (a) and (H₂dabco-CH₂-Cl)[ZnCl₄] (b) obtained in a heating-cooling mode at 5 K/min, 10 K/min, 15 K/min and 20 K/min, respectively.

Fig. S5 The antiparallel chains are connected by the hydrogen bonds to generate a 2D layers of

 $(H_2dabco-CH_2-Cl)[CoCl_4]$ (a) and $(H_2dabco-CH_2-Cl)[ZnCl_4]$ (b).

Table S1 Hydrogen bonds for $(H_2dabco-CH_2-Cl)[CoCl_4]$ and $(H_2dabco-CH_2-Cl)[ZnCl_4]$ at two temperatures

D-H…A	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D^{\dots}A)(\text{\AA})$	\angle (DHA)(°)
N2-H2…Cl2	0.83(5)	2.74(3)	3.349(4)	132(2)
N2-H2····Cl2 ^a	0.83(5)	2.74(3)	3.349(4)	132(2)
C1-H1…Cl3 ^b	0.98(5)	2.72(5)	3.635(6)	155(4)
C1-H1···Cl3°	0.98(5)	2.72(5)	3.635(6)	155(4)
C5-H5A…Cl3 ^b	0.97	2.76	3.630(4)	149

Hydrogen bonds of (H₂dabco-CH₂-Cl)[CoCl₄] at 358 K

Symmetry transformations used to generate equivalent atoms: a = x, 1/2-y, z; b = 1+x, y, z; c =

1+x, 1/2-y, z.

D-H···A	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D^{\dots}A)(\text{\AA})$	\angle (DHA)(°)
N2-H2····Cl1 ^a	0.88(2)	2.57(2)	3.246(2)	134(1)
N2-H2···· Cl4 ^a	0.88(2)	2.78(2)	3.384(2)	127(1)
N2-H2····Cl2 ^b	0.88(2)	2.79(2)	3.325(2)	120(1)
C1-H1A…Cl2	0.99	2.79	3.651(2)	145
C2-H2A…Cl2	0.99	2.70	3.584(2)	149
C3-H3B…Cl1 ^b	0.99	2.76	3.680(2)	156
C4-H4B…Cl2	0.99	2.68	3.571(2)	150
C5-H5A…Cl2 ^b	0.99	2.79	3.444(2)	124
C5-H5B…Cl3℃	0.99	2.82	3.471(2)	124
C6-H6A…Cl1 ^d	0.99	2.74	3.492(2)	133
C6-H6B…Cl4℃	0.99	2.77	3.517(2)	133
C7-H7A…Cl4℃	0.99	2.76	3.506(2)	133
C7-H7B…Cl1 ^d	0.99	2.74	3.494(2)	133

Hydrogen bonds of (H₂dabco-CH₂-Cl)[CoCl₄] at 100 K

Symmetry transformations used to generate equivalent atoms: a = x, y, 1+z; b = x, 1/2-y, 1/2+z; c = x, 1/2-x, 1/2-x; c = x, 1/2-x, 1/2-x; c = x, 1/2-x, 1/2-x; c = x, 1/2-x; c

1-x, -y, 1-z;d = 2-x, -y, 1-z.

Hydrogen bonds of $(H_2 dabco-CH_2-CI)/ZnCI_4$ at 363 K	ydrogen bonds of (H ₂ dabco-CH ₂ -C	$CI)[ZnCl_4]$ at 363 K	
---	---	------------------------	--

D-Н…А	d(D-H) (Å)	$d(H\cdots A)$ (Å)	$d(D \cdots A)$ (Å)	∠(DHA) (°)
N2-H2···Cl1 ^a	0.90(3)	2.68(17)	3.359(4)	132(14)
N2-H2···Cl1 ^b	0.90(3)	2.68(17)	3.359(4)	132(14)
C1-H1A····Cl3	0.97(16)	2.80(17)	3.652(5)	149(15)
C1-H1AC····Cl3	0.97(16)	2.74(17)	3.652(5)	156(15)
C5-H5A…Cl3	0.96	2.78	3.639(3)	149

Symmetry transformations used to generate equivalent atoms: a = -1+x, y, z; b = -1+x, 3/2-y, z.

D-H···A	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D^{\dots}A)(\text{\AA})$	∠(DHA) (°)
N2-H2···Cl2 ^a	0.90(5)	2.51(5)	3.239(5)	139(5)
N2-H2···Cl4 ^a	0.90(5)	2.77(6)	3.383(5)	127(5)
C1-H1B…Cl1 ^b	0.99	2.81	3.663(6)	144
C2-H2B····Cl1 ^b	0.99	2.69	3.576(6)	149
C3-H3A····Cl2°	0.99	2.76	3.681(6)	156
$C4-H4A\cdots Cl2^d$	0.99	2.76	3.499(6)	132
C4-H4B…Cl4 ^e	0.99	2.73	3.491(6)	134
C5-H5A…Cl4 ^e	0.99	2.77	3.512(6)	132
C5-H5B····Cl2 ^d	0.99	2.71	3.476(6)	134
C6-H6A…Cl1 ^b	0.99	2.68	3.568(6)	150
C7-H7A…Cl1℃	0.99	2.80	3.444(6)	124
C7-H7C····Cl3 ^e	0.99	2.82	3.466(6)	124

Hydrogen bonds of (H2dabco-CH2-Cl)[ZnCl4] at 100 K

Symmetry transformations used to generate equivalent atoms: a = x, -1+y, 1+z; b = x, -1+y, z; c = x

x, 1/2-y, 1/2+z; d = 2-x, 1-y, 1-z; e = 1-x, 1-y, 1-z.

Fig. S1 IR spectra of (H₂dabco-CH₂-Cl)[CoCl₄] (a) and (H₂dabco-CH₂-Cl)[ZnCl₄] (b).

 $\label{eq:Fig.S2} Fig. \ S2 \ PXRD \ patterns \ of \ (H_2 dabco-CH_2-Cl) [CoCl_4] \ (a) \ and \ (H_2 dabco-CH_2-Cl) [ZnCl_4] \ (b).$

The TG curves of (H₂dabco-CH₂-Cl)[CoCl₄] and (H₂dabco-CH₂-Cl)[ZnCl₄] are shown in Fig. S3. Because the Cl element is harmful to the sample holder and thermocouple of the TG instrument, the TG measurements were stopped when the compounds begin to decomposition.

 $\label{eq:Fig. S3 TG curves of (H_2 dabco-CH_2-Cl)[CoCl_4] (a) and (H_2 dabco-CH_2-Cl)[ZnCl_4] (b).$

(a)

Fig. S4 DSC curves of (H₂dabco-CH₂-Cl)[CoCl₄] (a) and (H₂dabco-CH₂-Cl)[ZnCl₄] (b) obtained in a heating-cooling mode at 5 K/min, 10 K/min, 15 K/min and 20 K/min, respectively.

(a)

Fig. S5 The antiparallel chains are connected by the hydrogen bonds to generate a 2D layers of $(H_2 dabco-CH_2-Cl)[CoCl_4]$ (a) and $(H_2 dabco-CH_2-Cl)[ZnCl_4]$ (b).