Disorder and Polymorphism in Cu(II)-polyoxometalate complexes: [Cu_{1.5}(H₂O)_{7.5}PW₁₂O₄₀]·4.75H₂O, *cis*- & *trans*-[Cu₂(H₂O)₁₀SiW₁₂O₄₀]·6H₂O

Sneha R. Bajpe^{*a*}, Sebastian Henke^{*b*}, Jung-Hoon Lee^{*a*}, Paul D. Bristowe^{*a*} and Anthony K. Cheetham^{*a*}

^a Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom. ^b Lehrstuhl für Anorganische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany. *sb974@cam.ac.uk, akc30@cam.ac.uk

Figure S1: Representation of the structure of $[Cu_{1.5}(H_2O)_{7.5}PW_{12}O_{40}]\cdot 4.75H_2O$ (1) as determined by single crystal X-ray diffraction. Atoms Cu2A and Cu2B and the oxygen atoms associated to the bound water molecules are occupied by 25%. H atoms and uncoordinated free water molecules are not included in the structural model for visual clarity.

Table S1. Experimental values of the atomic positions for $[Cu_{1.5}(H_2O)_{7.5}PW_{12}O_{40}]\cdot 4.75H_2O$ (1) along with selected bond distances. **CCDC number: 1420704**.

Atomic p	ositions				Bond dist	ances
	x	У	z	Α	В	A-B [Å]
W1	0.68241(3)	0.39683(2)	0.35608(2)	W1	02	2.425(6)
W2	0.61078(3)	0.40082(2)	0.58834(2)	W1	011	1.926(6)
W3	0.78553(3)	0.28013(2)	0.51645(2)	W1	012	1.900(6)
W4	0.69328(3)	0.16661(2)	0.37679(2)	W1	O13	1.886(6)
W5	0.59203(3)	0.28265(2)	0.21645(2)	W1	O14	1.897(6)
W6	0.42792(3)	0.39322(2)	0.27921(2)	W1	O35	1.696(6)
W7	0.35754(3)	0.40089(2)	0.51169(2)	W2	01	2.417(5)
W8	0.44716(3)	0.29385(2)	0.66197(2)	W2	O13	1.911(6)
W9	0.62443(3)	0.17252(2)	0.59217(2)	W2	O24	1.905(6)
W10	0.41600(3)	0.16492(2)	0.29812(2)	W2	O26	1.921(6)
W11	0.34807(3)	0.16975(2)	0.51351(2)	W2	027	1.886(6)
W12	0.25403(3)	0.27628(2)	0.36341(2)	W2	O34	1.700(6)
Cu1	0.45601(8)	0.00656(5)	0.16540(7)	W3	O3	2.419(6)
Cu2A	0.3850(4)	0.5024(2)	0.0709(3)	W3	012	1.904(6)

Cu2B	0.4624(4)	0.5123(2)	0.1008(3)	W3	O22	1.908(6)
P1	0.51999(16)	0.28346(9)	0.43971(13)	W3	027	1.905(6)
01	0.4954(4)	0.3260(2)	0.5164(4)	W3	O28	1.917(6)
02	0.5448(5)	0.3217(3)	0.3595(4)	W3	O36	1.691(6)
O3	0.6141(5)	0.2436(3)	0.4684(4)	W4	O3	2.446(6)
04	0.4268(4)	0.2425(3)	0.4143(4)	W4	O5	1.903(6)
O5	0.5524(5)	0.1457(3)	0.3461(4)	W4	O9	1.897(6)
O6	0.3643(5)	0.1296(3)	0.4014(4)	W4	O21	1.913(6)
07	0.2914(5)	0.2119(3)	0.2860(4)	W4	O28	1.907(6)
O8	0.4832(5)	0.2265(3)	0.2348(4)	W4	O37	1.693(6)
O9	0.6752(5)	0.2277(3)	0.2874(4)	W5	02	2.436(6)
O10	0.4898(5)	0.3453(3)	0.1929(4)	W5	O8	1.903(6)
011	0.6872(5)	0.3463(3)	0.2517(4)	W5	O9	1.891(6)
012	0.7613(5)	0.3354(3)	0.4193(4)	W5	O10	1.919(6)
013	0.6386(5)	0.4193(3)	0.4683(4)	W5	011	1.906(6)
014	0.5609(5)	0.4330(3)	0.3008(4)	W5	O30	1.687(6)
O15	0.4001(5)	0.4171(3)	0.3969(4)	W6	02	2.433(6)
O16	0.3286(5)	0.3317(3)	0.2937(4)	W6	O10	1.891(6)
017	0.2807(4)	0.3345(3)	0.4563(4)	W6	014	1.934(6)
O18	0.2389(5)	0.2154(3)	0.4512(4)	W6	O15	1.907(6)
O19	0.3644(5)	0.2346(3)	0.5964(4)	W6	O16	1.883(6)
O20	0.4875(5)	0.1503(3)	0.5457(4)	W6	O31	1.699(6)
O21	0.6776(5)	0.1319(3)	0.4917(4)	W7	01	2.418(5)
022	0.7477(5)	0.2190(3)	0.5987(4)	W7	O15	1.885(6)
O23	0.5572(5)	0.2371(3)	0.6490(4)	W7	017	1.915(6)
O24	0.5494(4)	0.3562(3)	0.6797(4)	W7	O25	1.914(6)
O25	0.3525(5)	0.3557(3)	0.6203(4)	W7	O26	1.892(6)
O26	0.4779(5)	0.4391(3)	0.5649(4)	W7	O33	1.697(6)
027	0.7097(5)	0.3380(3)	0.5804(4)	W8	01	2.426(5)
O28	0.8018(5)	0.2148(3)	0.4336(4)	W8	O19	1.908(6)
O29	0.3933(5)	0.1076(3)	0.2230(4)	W8	O23	1.909(6)
O30	0.6243(5)	0.2668(3)	0.1123(4)	W8	O24	1.905(6)
O31	0.3629(5)	0.4466(3)	0.2149(4)	W8	O25	1.900(6)
O32	0.1288(5)	0.2903(3)	0.3305(4)	W8	O40	1.693(6)
O33	0.2639(5)	0.4542(3)	0.5225(4)	W9	O3	2.422(6)
O34	0.6758(5)	0.4560(3)	0.6492(4)	W9	O20	1.919(6)
O35	0.7722(5)	0.4508(3)	0.3366(4)	W9	O21	1.924(6)
O36	0.9106(5)	0.2951(3)	0.5497(4)	W9	022	1.888(6)
037	0.7600(5)	0.1111(3)	0.3273(4)	W9	O23	1.894(6)
O38	0.2817(5)	0.1161(3)	0.5685(4)	W9	O39	1.693(6)
O39	0.6486(5)	0.1207(3)	0.6747(4)	W10	04	2.431(6)
040	0.4168(5)	0.2819(3)	0.7681(4)	W10	O5	1.905(6)
041	0.5229(6)	-0.0274(4)	0.2773(5)	W10	O6	1.902(6)
042	0.5848(5)	0.0491(3)	0.1500(5)	W10	07	1.908(6)
043	0.3844(5)	0.0360(3)	0.0531(4)	W10	08	1.896(6)
044	0.3289(5)	-0.0362(3)	0.1882(4)	W10	O29	1.698(6)
O45	0.5103(5)	-0.0785(3)	0.0846(4)	W11	04	2.452(6)

O46	0.3844(9)	0.5828(5)	0.1400(8)	W11	O6	1.927(6)
O47A	0.2278(13)	0.5049(11)	0.0571(16)	W11	O18	1.917(6)
O47B	0.3488(16)	0.4781(11)	0.0256(15)	W11	O19	1.890(6)
O48A	0.3745(19)	0.4195(8)	0.0184(15)	W11	O20	1.883(6)
O48B	0.5555(19)	0.4448(10)	0.0714(16)	W11	O38	1.703(6)
O49A	0.5339(13)	0.4866(11)	0.0806(16)	W12	04	2.425(6)
O49B	0.5527(15)	0.5398(10)	0.2048(10)	W12	07	1.911(6)
O50A	0.389(3)	0.5399(13)	-0.0746(14)	W12	O16	1.909(6)
O50B	0.540(2)	0.5714(12)	-0.0058(18)	W12	017	1.903(6)
O51W	0.5740(17)	0.0160(8)	0.4440(10)	W12	O18	1.896(6)
O52W	0.497(3)	0.0202(16)	0.438(2)	W12	O32	1.688(6)
O53W	0.684(3)	-0.0076(17)	0.352(3)	Cu1	O41	1.982(7)
O54W	1.0188(8)	0.1669(5)	0.4544(10)	Cu1	042	1.937(7)
O55W	0.0950(5)	0.3542(3)	0.5457(5)	Cu1	O43	1.976(6)
O56W	0.4258(6)	0.1466(3)	0.7694(5)	Cu1	044	1.944(6)
O57W	0.567(2)	0.5029(13)	0.1325(19)	Cu1	O45	2.357(6)
O58W	0.285(2)	0.5075(14)	0.023(2)	Cu2A	O31	2.523(8)
O59W	0.155(2)	0.5023(14)	0.076(2)	Cu2A	O46	2.040(10)
				Cu2A	047A	2.031(16)
				Cu2A	O48A	1.976(16)
				Cu2A	O49A	1.952(16)
				Cu2A	O50A	2.343(17)
				Cu2B	O31	2.645(8)
				Cu2B	O46	1.955(10)
				Cu2B	O47B	1.938(16)
				Cu2B	O48B	1.975(16)
				Cu2B	O49B	1.9779(10)
				Cu2B	O50B	2.343(17)
				P1	01	1.534(6)
				P1	02	1.522(6)
				P1	O3	1.534(6)
				P1	O4	1.529(6)
				O48B	O50B	1.57(4)
				O49A	O50A	1.16(4)
				O50A	O49A	1.16(4)
				O50B	Cu2B	2.32(3)
				O50B	O48B	1.57(4)

•

Bor	nd angle	s at the	W site	Вс	ond angle	s at the C	site	Bor	nd angles	s at the C	u site
Α	B	С	A-B-C	Α	В	С	A-B-C	Α	В	С	A-B-C
			[deg]				[deg]				[deg]
011	W1	02	72.3(2)	W2	01	W8	88.97(18)	O41	Cu1	O45	90.9(3)
012	W1	02	83.1(2)	W7	01	W8	89.12(19)	O42	Cu1	O41	87.4(3)
012	W1	011	87.5(2)	P1	01	W2	126.3(3)	O42	Cu1	O43	95.5(3)
013	W1	02	83.5(2)	P1	01	W7	125.5(3)	O42	Cu1	O44	176.7(3)
013	W1	011	155.5(2)	P1	01	W8	125.9(3)	O42	Cu1	O45	91.4(3)
O13	W1	012	85.4(3)	W1	02	W5	89.20(19)	O43	Cu1	O41	176.6(3)
013	W1	014	89.5(3)	W1	02	W6	89.20(19)	O43	Cu1	O45	87.4(2)
014	W1	02	72.8(2)	W6	02	W5	88.44(18)	O44	Cu1	O41	89.6(3)
014	W1	011	87.5(3)	P1	02	W1	125.9(3)	O44	Cu1	O43	87.6(3)
014	W1	012	155.8(2)	P1	02	W5	126.2(3)	O44	Cu1	O45	90.0(2)
O35	W1	02	171.0(2)	P1	02	W6	126.0(3)	O46	Cu2A	O31	88.4(4)
O35	W1	011	101.2(3)	W3	O3	W4	89.01(19)	O46	Cu2A	O50A	100.2(8)
O35	W1	012	103.2(3)	W3	O3	W9	89.05(18)	O47A	Cu2A	O31	85.7(7)
O35	W1	O13	103.3(3)	W9	O3	W4	89.52(18)	O47A	Cu2A	O46	89.3(8)
O35	W1	014	101.0(3)	P1	O3	W3	126.1(3)	O47A	Cu2A	O50A	89.3(11)
O13	W2	01	82.6(2)	P1	O3	W4	126.0(3)	O48A	Cu2A	O31	83.8(7)
O13	W2	O26	87.9(3)	P1	O3	W9	125.4(3)	O48A	Cu2A	O46	171.6(9)
O24	W2	01	72.6(2)	W10	04	W11	89.00(19)	O48A	Cu2A	O47A	86.8(10)
O24	W2	O13	155.2(2)	W12	04	W10	88.97(18)	O48A	Cu2A	O50A	87.2(10)
O24	W2	O26	86.6(2)	W12	04	W11	88.60(19)	O49A	Cu2A	O31	91.3(7)
O26	W2	01	72.3(2)	P1	04	W10	126.2(3)	O49A	Cu2A	O46	98.9(8)
O27	W2	01	83.1(2)	P1	04	W11	125.6(3)	O49A	Cu2A	O47A	171.2(10)
O27	W2	O13	85.3(3)	P1	04	W12	126.4(3)	O49A	Cu2A	O48A	84.7(10)
O27	W2	O24	89.7(3)	W4	O5	W10	152.1(4)	O49A	Cu2A	O50A	92.3(11)
O27	W2	O26	155.1(2)	W10	O6	W11	126.8(3)	O50A	Cu2A	O31	170.0(8)
O34	W2	01	170.8(3)	W10	07	W12	126.0(3)	O46	Cu2B	O31	86.8(4)
O34	W2	O13	103.9(3)	W10	O8	W5	154.4(3)	O46	Cu2B	O48B	172.8(9)
O34	W2	O24	100.9(3)	W5	O9	W4	152.0(3)	O46	Cu2B	O49B	79.1(8)
O34	W2	O26	101.1(3)	W6	O10	W5	126.0(3)	O46	Cu2B	O50B	91.7(8)
O34	W2	O27	103.8(3)	W5	011	W1	125.9(3)	O47B	Cu2B	O31	77.6(7)
012	W3	O3	83.3(2)	W1	012	W3	152.2(3)	O47B	Cu2B	O46	95.4(8)
012	W3	022	154.9(3)	W1	013	W2	151.9(3)	O47B	Cu2B	O48B	91.8(11)
012	W3	027	84.6(2)	W1	O14	W6	125.9(3)	O47B	Cu2B	O49B	163.4(10)
012	W3	O28	89.5(2)	W7	O15	W6	152.7(3)	O47B	Cu2B	O50B	99.1(11)
O22	W3	O3	71.9(2)	W6	O16	W12	153.2(3)	O48B	Cu2B	O31	94.3(8)
O22	W3	O28	87.0(3)	W12	017	W7	152.4(3)	O48B	Cu2B	O49B	93.9(10)
O27	W3	O3	82.8(2)	W12	O18	W11	126.6(3)	O48B	Cu2B	O50B	87.7(11)
O27	W3	O22	88.3(2)	W11	O19	W8	151.8(3)	O49B	Cu2B	O31	86.4(7)
027	W3	O28	155.3(3)	W11	O20	W9	151.5(3)	O49B	Cu2B	O50B	96.7(10)
O28	W3	O3	72.6(2)	W4	O21	W9	126.6(3)	O50B	Cu2B	O31	176.2(8)
O36	W3	O3	171.8(2)	W9	022	W3	126.8(3)	O41	Cu1	O45	90.9(3)
O36	W3	012	101.8(3)	W9	O23	W8	154.2(3)	O42	Cu1	O41	87.4(3)
O36	W3	022	103.2(3)	W8	O24	W2	125.9(3)	O42	Cu1	O43	95.5(3)
O36	W3	027	103.8(3)	W8	O25	W7	126.0(3)	O42	Cu1	O44	176.7(3)

Table S2: Experimental values of selected bond angles at the Cu (Cu1 and disordered Cu2A and Cu2B), P, W and O sites and bond distances for $[Cu_{1.5}(H_2O)_{7.5}PW_{12}O_{40}] \cdot 4.75H_2O$. **CCDC number: 1420704**.

O36	W3	O28	100.9(3)	W7	O26	W2	125.8(3)	O42	Cu1	O45	91.4(3)
O5	W4	O3	82.5(2)	W2	027	W3	153.1(3)	O43	Cu1	O41	176.6(3)
O5	W4	O21	87.8(3)	W4	O28	W3	126.2(3)	O43	Cu1	O45	87.4(2)
O5	W4	O28	154.5(3)	W6	O31	Cu2A	137.6(4)	O44	Cu1	O41	89.6(3)
O9	W4	O3	83.2(2)	W6	O31	Cu2B	119.9(3)	O44	Cu1	O43	87.6(3)
O9	W4	O5	86.0(3)	O50B	O48B	Cu2B	81.0(14)	O44	Cu1	O45	90.0(2)
O9	W4	O21	154.7(3)	O50A	O49A	Cu2A	158(2)	O46	Cu2A	O31	88.4(4)
O9	W4	O28	88.8(3)	O49A	O50A	Cu2A	88.7(16)	O46	Cu2A	O50A	100.2(8)
021	W4	O3	71.7(2)	Cu2B	O50B	Cu2B	90.0(9)	O47A	Cu2A	O31	85.7(7)
O28	W4	O3	72.1(2)	O48B	O50B	Cu2B	87.0(13)	O47A	Cu2A	O46	89.3(8)
O28	W4	O21	86.4(3)	O48B	O50B	Cu2B	57.2(11)	O47A	Cu2A	O50A	89.3(11)
O37	W4	O3	171.3(3)	W2	01	W8	88.97(18)	O48A	Cu2A	O31	83.8(7)
O37	W4	O5	103.4(3)	W7	01	W8	89.12(19)	O48A	Cu2A	O46	171.6(9)
O37	W4	09	103.4(3)	P1	01	W2	126.3(3)	O48A	Cu2A	047A	86.8(10)
037	W4	021	101.8(3)	P1	01	W7	125.5(3)	048A	Cu2A	O50A	87.2(10)
037	W4	O28	102.1(3)	P1	01	W8	125.9(3)	O49A	Cu2A	O31	91.3(7)
08	W5	02	82.0(2)	W1	02	W5	89.20(19)	049A	Cu2A	046	98.9(8)
08	W5	010	88.8(3)	W1	02	W6	89.20(19)	049A	Cu2A	047A	171.2(10)
08	W5	011	154.1(2)	W6	02	W5	88.44(18)	049A	Cu2A	048A	84.7(10)
09	W5	02	83.8(2)	P1	02	W1	125.9(3)	049A	Cu2A	050A	92.3(11)
09	W5	08	84.6(3)	P1	02	W5	126.2(3)	050A	Cu2A	031	170.0(8)
09	VV5	010	156.1(3)	P1	02	VV6	126.0(3)	046	Cu2B	031	86.8(4)
09	VV5	011	88.6(2)	W3	03	VV4	89.01(19)	046	Cu2B	0488	172.8(9)
010	VV5	02	72.5(2)	VV3	03	W9	89.05(18)	046	Cu2B	049B	79.1(8)
011	VV5	02	72.4(2)	VV9 D1	03	VV4	89.52(18)	040		050B	91.7(8)
011	VV5	010	07.4(3)		03	VV3	120.1(3)	047B		031	77.0(7) 05.4(9)
030	VV5	02	1/1.3(3)		03	VV4	120.0(3)	047B			90.4(0)
030	W5	00	103.0(3)	Г I W/10	03	VV9 \//11	80.00(10)	047B		040B	91.0(11) 163.4(10)
030	W5	03	100.0(3)	W10	04	W10	88.97(18)	047B	Cu2B	049D	90 1(11)
030	W5	010	102.9(3)	W12	04	W10	88 60(19)	047B	Cu2B	0300	99.1(11)
010	W6	02	73 0(2)	P1	04	W10	126 2(3)	048B	Cu2B	049B	93.9(10)
010	W6	014	87.0(3)	P1	04	W10	125.2(0)	048B	Cu2B	050B	87 7(11)
010	W6	015	155 2(2)	Р1	04	W12	126.6(0)	049B	Cu2B	031	86 4(7)
014	W6	02	72.0(2)	 W4	05	W10	152.1(4)	049B	Cu2B	050B	96.7(10)
015	W6	02	82.3(2)	W10	06	W11	126.8(3)	O50B	Cu2B	031	176.2(8)
015	W6	014	87.0(3)	W10	07	W12	126.0(3)				- (-)
O16	W6	02	83.6(2)	W10	O8	W5	154.4(3)				
O16	W6	O10	90.6(3)	W5	O9	W4	152.0(3)				
O16	W6	014	155.2(2)	W6	O10	W5	126.0(3)				
O16	W6	O15	84.9(2)	W5	011	W1	125.9(3)				
O31	W6	02	171.0(3)	W1	012	W3	152.2(3)	Во	nd angle	s at the	P site
O31	W6	O10	101.9(3)	W1	013	W2	151.9(3)	Α	В	С	A-B- C[deg]
O31	W6	014	100.7(3)	W1	014	W6	125.9(3)	01	P1	O3	109.7(3)
O31	W6	015	102.8(3)	W7	O15	W6	152.7(3)	O2	P1	O1	109.4(3)
031	W6	O16	104.0(3)	W6	O16	W12	153.2(3)	02	P1	O3	109.1(3)
015	W7	01	83.7(2)	W12	017	W7	152.4(3)	O2	P1	O4	109.3(3)
O15	W7	017	85.4(2)	W12	O18	W11	126.6(3)	04	P1	01	109.9(3)

O15	W7	O25	155.5(2)	W11	O19	W8	151.8(3)	04	P1	O3	109.5(3)
O15	W7	O26	91.1(3)	W11	O20	W9	151.5(3)				
017	W7	01	81.9(2)	W4	O21	W9	126.6(3)				
O25	W7	01	72.4(2)	W9	022	W3	126.8(3)				
O25	W7	017	86.1(2)	W9	O23	W8	154.2(3)				
O26	W7	01	72.7(2)	W8	024	W2	125.9(3)				
O26	W7	017	154.6(2)	W8	O25	W7	126.0(3)				
O26	W7	O25	86.7(3)	W7	O26	W2	125.8(3)				
O33	W7	01	172.8(2)	W2	027	W3	153.1(3)				
O33	W7	O15	102.5(3)	W4	O28	W3	126.2(3)				
O33	W7	017	102.1(3)	W6	O31	Cu2A	137.6(4)				
O33	W7	025	101.7(3)	W6	O31	Cu2B	119.9(3)				
O33	W7	026	103.2(3)	O50B	O48B	Cu2B	81.0(14)				
019	W8	01	84.3(2)	050A	049A	Cu2A	158(2)				
019	W8	023	84.3(2)	049A	050A	Cu2A	88.7(16)				
023	W8	01	81.6(2)	Cu2B	050B	Cu2B	90.0(9)				
024	W8	01	72.4(2)	048B	O50B	Cu2B	87.0(13)				
024	VV8	019	156.3(2)	0488	O20B	Cu2B	57.2(11)				
024	VV8	023	87.9(2)								
025	VV8	01	72.4(2)								
025	VV8	019	89.3(Z)								
025	VVO	023	155.7(2)								
025	VVO \//9	024	07.0(2)								
040	W8	019	102 9(3)								
040	W8	013	102.9(3)								
040	W8	020	102.0(0)								
040	W8	025	103.5(3)								
O20	W9	03	83.3(2)								
020	W9	021	88.3(3)								
021	W9	03	72.1(2)								
022	W9	03	72.2(2)								
022	W9	O20	155.4(2)								
O22	W9	O21	86.5(3)								
O22	W9	O23	89.4(3)								
O23	W9	O3	82.5(2)								
O23	W9	O20	84.9(3)								
O23	W9	O21	154.3(2)								
O39	W9	O3	172.0(3)								
O39	W9	O20	102.4(3)								
O39	W9	O21	102.2(3)								
O39	W9	O22	102.2(3)								
O39	W9	O23	103.5(3)								
O5	W10	04	83.0(2)								
O5	W10	07	155.2(2)								
O6	W10	04	72.5(2)								
06	W10	O5	88.4(3)								
O6	W10	07	87.2(3)								
07	W10	04	72.4(2)								

O8	W10	04	82.1(2)					
08	W10	O5	84.3(3)					
08	W10	O6	154.3(2)					
08	W10	07	89.2(3)					
O29	W10	04	172.2(3)					
O29	W10	O5	101.5(3)					
O29	W10	O6	101.1(3)					
O29	W10	07	103.2(3)					
O29	W10	O8	104.5(3)					
O6	W11	O4	71.6(2)					
O18	W11	O4	71.9(2)					
O18	W11	O6	86.1(3)					
O19	W11	O4	83.4(2)					
O19	W11	O6	154.9(3)					
O19	W11	O18	88.6(2)					
O20	W11	04	82.5(2)					
O20	W11	O6	87.7(2)					
O20	W11	O18	154.4(2)					
O20	W11	O19	86.6(2)					
O38	W11	O4	171.3(2)					
O38	W11	O6	101.7(3)					
O38	W11	O18	102.5(3)					
O38	W11	O19	103.4(3)					
O38	W11	O20	103.1(3)					
07	W12	O4	72.5(2)					
O16	W12	O4	82.9(2)					
O16	W12	07	88.3(2)					
017	W12	O4	81.8(2)					
017	W12	07	154.1(3)					
017	W12	O16	84.8(2)					
O18	W12	O4	72.9(2)					
O18	W12	07	87.3(3)					
O18	W12	O16	155.5(2)					
O18	W12	017	88.8(2)					
O32	W12	04	172.4(3)					
O32	W12	07	103.6(3)		1			
O32	W12	O16	103.7(3)					
O32	W12	017	102.4(3)		1			
O32	W12	O18	100.7(3)	I				

Figure S2: Representation of the structures of the two polymorphs of $[Cu_2(H_2O)_{10}SiW_{12}O_{40}] \cdot 6H_2O$ as determined by single crystal X-ray diffraction: the monoclinic polymorph **2***c* and the triclinic polymorph **2***t*. H atoms have not been included in the model. Uncoordinated, free water molecules are not shown for the sake of clarity.

Table S3. Computed atomic positions of monoclinic **2***c* compared with experimental values determined by single crystal X-ray diffraction measured at 293 K. The table also shows experimental values of selected bond distances. **CCDC number: 1420705**.

		Ato	mic positions				B	ond dist	ances
		Experiment			DFT		Α	В	A-B [Å]
				x	У	z			
W1	0.94053(3)	0.83483(2)	0.31009(3)	0.9352	0.8360	0.3089	W1	01	2.374(7)
W2	0.10775(3)	0.71539(2)	0.22998(3)	0.1097	0.7163	0.2282	W1	O5	1.919(7)
W3	0.94129(3)	0.61032(2)	0.28715(3)	0.9424	0.6083	0.2877	W1	O6	1.938(7)
W4	0.7731(3)	0.72945(2)	0.36640(3)	0.7674	0.7276	0.3683	W1	07	1.928(7)
W5	0.86866(3)	0.82826(2)	0.51560(3)	0.8614	0.8289	0.5180	W1	08	1.917(8)
W6	0.14226(3)	0.82044(2)	0.60046(3)	0.1403	0.8255	0.6021	W1	O29	1.703(8)
W7	0.21496(3)	0.82350(2)	0.39416(3)	0.2138	0.8282	0.3937	W2	O3	2.357(7)
W8	0.29526(3)	0.71327(2)	0.53187(3)	0.2985	0.7170	0.5354	W2	08	1.893(8)
W9	0.95653(3)	0.70394(2)	0.66061(3)	0.9561	0.7047	0.6665	W2	O9	1.923(7)
W10	0.8615(3)	0.60386(2)	0.51068(3)	0.8613	0.6012	0.5153	W2	O10	1.915(8)
W11	0.10973(3)	0.59639(2)	0.58815(3)	0.1138	0.5960	0.5938	W2	011	1.909(8)
W12	0.19103(3)	0.60503(2)	0.36525(3)	0.1971	0.6063	0.3673	W2	O30	1.719(7)
Cu1	0.95284(11)	0.99881(8)	0.16201(9)	0.9526	0.9973	0.1610	W3	O3	2.369(7)
Cu2	0.87072(11)	0.48121(8)	0.10401(9)	0.8746	0.4794	0.1004	W3	011	1.920(8)
Si1	0.03406(19)	0.71559(13)	0.44736(16)	0.0339	0.7160	0.4501	W3	012	1.928(7)
01	0.9385(5)	0.7607(3)	0.4202(4)	0.9348	0.7612	0.4224	W3	013	1.923(7)
02	0.1354(5)	0.7541(4)	0.4808(4)	0.1364	0.7572	0.4833	W3	014	1.908(8)
O3	0.06(5)	0.6763(3)	0.3627(4)	0.0619	0.6755	0.3645	W3	O31	1.718(7)
04	0.0028(5)	0.6716(3)	0.5238(4)	0.0035	0.6703	0.5297	W4	01	2.346(7)
O5	0.0769(5)	0.8500(3)	0.3627(5)	0.0738	0.8529	0.3593	W4	07	1.897(8)
O6	0.8856(5)	0.8736(4)	0.4087(4)	0.8779	0.8733	0.4099	W4	014	1.901(8)
07	0.8111(5)	0.7923(4)	0.2926(4)	0.8044	0.7917	0.2923	W4	O15	1.940(7)
O8	0.004(5)	0.7731(4)	0.2461(4)	0.0016	0.7736	0.2455	W4	O16	1.917(7)
O9	0.1953(6)	0.7666(4)	0.3039(4)	0.1955	0.7687	0.3039	W4	032	1.706(7)

O10	0.203(5)	0.6520(4)	0.2618(4)	0.2086	0.6519	0.2609	W5	01	2.339(8)
011	0.0052(6)	0.6558(4)	0.2005(4)	0.0069	0.6548	0.1999	W5	O6	1.964(7)
012	0.0704(5)	0.5679(4)	0.3076(4)	0.0750	0.5662	0.3100	W5	O15	1.908(7)
O13	0.9089(5)	0.5863(3)	0.4013(4)	0.9102	0.5846	0.4045	W5	O19	1.877(8)
014	0.8446(5)	0.6736(4)	0.3000(4)	0.8430	0.6712	0.3010	W5	022	1.904(7)
O15	0.7538(5)	0.7897(3)	0.4543(4)	0.7458	0.7881	0.4566	W5	O33	1.696(8)
O16	0.7904(5)	0.6708(4)	0.4571(4)	0.7898	0.6688	0.4612	W6	02	2.364(7)
017	0.8545(5)	0.6455(4)	0.6218(4)	0.8533	0.6430	0.6289	W6	O20	1.900(8)
O18	0.9767(5)	0.5606(4)	0.5668(4)	0.9791	0.5580	0.5719	W6	022	1.922(7)
O19	0.8795(5)	0.7650(4)	0.5960(5)	0.8752	0.7636	0.5984	W6	O23	1.935(7)
O20	0.0699(5)	0.7578(4)	0.6530(4)	0.0690	0.7606	0.6559	W6	O24	1.916(7)
O21	0.0538(5)	0.6397(3)	0.6829(4)	0.0549	0.6393	0.6908	W6	O34	1.720(8)
O22	0.0097(5)	0.8459(3)	0.5493(4)	0.0034	0.8477	0.5533	W7	02	2.339(7)
O23	0.2031(5)	0.8627(4)	0.5078(4)	0.2021	0.8677	0.5078	W7	O5	1.912(7)
024	0.2668(5)	0.7740(3)	0.6137(4)	0.2677	0.7788	0.6173	W7	09	1.888(7)
O25	0.3242(5)	0.7763(4)	0.4510(5)	0.3271	0.7812	0.4532	W7	O23	1.980(7)
O26	0.2696(5)	0.6623(4)	0.4315(4)	0.2752	0.6649	0.4336	W7	O25	1.922(7)
O27	0.2143(5)	0.6575(4)	0.5880(4)	0.2173	0.6597	0.5929	W7	O35	1.698(9)
O28	0.1404(5)	0.5803(4)	0.4740(4)	0.1467	0.5806	0.4776	W8	02	2.345(6)
O29	0.9242(6)	0.8922(4)	0.2375(5)	0.9146	0.8936	0.2335	W8	O24	1.909(7)
O30	0.1439(6)	0.7322(4)	0.1282(5)	0.1460	0.7350	0.1247	W8	O25	1.937(8)
O31	0.8735(6)	0.5587(4)	0.2228(4)	0.8757	0.5547	0.2235	W8	O26	1.932(7)
O32	0.6468(6)	0.7185(4)	0.3306(5)	0.6382	0.7131	0.3335	W8	027	1.883(8)
O33	0.8061(6)	0.8813(4)	0.5702(5)	0.7960	0.8833	0.5767	W8	O36	1.701(7)
O34	0.1627(5)	0.8726(4)	0.6820(4)	0.1604	0.8784	0.6849	W9	04	2.358(7)
O35	0.2872(6)	0.8776(4)	0.3506(5)	0.2897	0.8820	0.3478	W9	017	1.919(7)
O36	0.419(5)	0.6954(4)	0.5668(5)	0.4263	0.6988	0.5694	W9	019	1.921(7)
O37	0.2802(5)	0.5505(4)	0.3511(5)	0.2896	0.5504	0.3537	W9	O20	1.909(8)
O38	0.1708(6)	0.5415(4)	0.6487(5)	0.1792	0.5401	0.6550	W9	021	1.921(7)
O39	0.7648(5)	0.5530(4)	0.5180(5)	0.7620	0.5484	0.5219	W9	O40	1.712(8)
O40	0.9243(6)	0.7175(4)	0.7640(5)	0.9212	0.7201	0.7708	W10	04	2.371(7)
041	0.02(7)	0.0392(5)	0.2644(5)	0.0180	0.0382	0.2660	W10	013	1.887(7)
042	0.0828(6)	0.9598(4)	0.1425(6)	0.0856	0.9557	0.1549	W10	O16	1.908(7)
043	0.88(6)	0.9637(4)	0.0575(5)	0.8790	0.9614	0.0566	W10	017	1.961(7)
044	0.8232(6)	0.0379(4)	0.1904(5)	0.8252	0.0420	0.1806	W10	018	1.927(7)
045	0.9968(7)	0.0825(5)	0.0649(5)	0.9998	0.0807	0.0577	W10	039	1.701(8)
046	0.722(6)	0.4788(4)	0.1058(6)	0.7227	0.4807	0.1062	W11	04	2.347(7)
047	0.8776(7)	0.4000(4)	0.1556(5)	0.8759	0.3949	0.1456	W11	018	1.907(7)
048	0.0202(6)	0.4846(4)	0.1088(5)	0.0299	0.4794	0.1067	W11	021	1.943(7)
049	0.8631(7)	0.5549(4)	0.0311(5)	0.8734	0.5560	0.0322	W11	027	1.923(7)
O50	0.8901(6)	0.4244(5)	0.9607(6)	0.8983	0.4238	0.9521	W11	028	1.875(7)
051W	0.09(8)	0.9720(5)	0.4832(7)	0.0963	0.9874	0.4716	W11	038	1.697(8)
052W	0.1231(7)	0.4562(4)	0.2578(5)	0.1330	0.4606	0.2565	W12	03	2.325(7)
053W	0.1108(7)	0.8540(5)	0.0783(7)	0.1055	0.8554	0.0700	W12	010	1.929(8)
054W	0.451(8)	0.6552(5)	0.2918(7)	0.4600	0.6507	0.2989	W12	012	1.925(7)
055W	0.2048(8)	0.0036(6)	0.3399(7)	0.2056	0.0054	0.3303	W12	026	1.884(7)
056W	0.0323(7)	0.6772(5)	0.9566(6)	0.0256	0.6748	0.9649	W12	028	1.934(7)
H1				0.5866	0.4782	0.5403	W12	037	1.704(8)
H2				0.7208	0.5153	0.5820	Cu1	029	2.686(9)

H3	0.8083	0.0074	0.7046	Cu1	O41	1.964(8)
H4	0.8532	0.0793	0.7116	Cu1	O42	1.942(9)
H5	-0.0370	0.6699	-0.0765	Cu1	O43	1.970(8)
H6	0.0844	0.6723	-0.0823	Cu1	044	1.975(8)
H7	0.1113	0.8210	0.7118	Cu1	O45	2.489(10)
H8	0.2193	0.8229	0.6939	Cu2	O31	2.519(8)
H9	0.8826	0.4522	0.6543	Cu2	O46	1.933(8)
H10	-0.0341	0.5148	0.7051	Cu2	047	1.976(9)
H11	-0.0029	0.8072	0.0445	Cu2	O48	1.937(8)
H12	0.0848	0.7931	0.0103	Cu2	O49	1.989(9)
H13	-0.0009	-0.0137	0.3573	Cu2	O50	2.581(9)
H14	-0.0259	-0.0845	0.3783	Si1	01	1.626(7)
H15	0.7776	0.0830	0.2493	Si1	02	1.621(7)
H16	0.8093	0.0207	0.2178	Si1	O3	1.633(7)
H17	0.5842	0.0120	0.3200	Si1	04	1.612(8)
H18	0.5908	0.0652	0.2618			
H19	-0.0826	-0.0552	0.4908			
H20	0.8031	-0.0070	0.4723			
H21	-0.0803	0.1038	0.4773			
H22	-0.0758	0.1100	0.3951			
H23	0.2194	0.4191	0.5261			
H24	0.0693	0.4502	0.4721			
H25	0.3767	0.5034	0.5526			
H26	0.4164	0.5623	0.6134			
H27	0.1122	0.5933	0.4379			
H28	0.0240	0.6120	0.4694			
H29	0.0344	0.4768	0.5916			
H30	0.1018	0.5334	0.6671			
H31	0.1902	0.6336	0.6081			
H32	0.3094	0.6142	0.7091			

Table S4: Experimental values of selected bond angles at the Cu (Cu1 and Cu2), Si, W and O sites for the monoclinic $[Cu_2(H_2O)_{10}SiW_{12}O_{40}] \cdot 6H_2O$ structure (**2***c*) measured at 293 K. **CCDC number: 1420705**.

В	ond angl	e at the V	/ site	B	ond angl	e at the C) site	Bo	ond angle	e at the C	Cu site
Α	В	С	A-B-C	Α	В	С	A-B-C	Α	В	С	A-B-C
			[deg]				[deg]				[deg]
O5	W1	01	83.1(3)	W4	01	W1	90.8(2)	O41	Cu1	O29	97.0(4)
O5	W1	O6	88.4(3)	W5	01	W1	91.9(3)	O41	Cu1	O43	175.9(4)
O5	W1	07	155.5(3)	W5	01	W4	91.5(3)	O41	Cu1	044	87.2(4)
O6	W1	01	73.7(3)	Si1	01	W1	124.3(4)	O41	Cu1	O45	92.0(4)
07	W1	01	72.6(3)	Si1	01	W4	124.4(4)	O42	Cu1	O29	79.8(3)
07	W1	O6	87.6(3)	Si1	01	W5	124.1(3)	O42	Cu1	O41	89.7(4)
08	W1	01	84.3(3)	W7	02	W6	92.6(3)	O42	Cu1	O43	93.5(4)
08	W1	O5	85.7(3)	W7	02	W8	91.7(2)	O42	Cu1	O44	176.1(4)
08	W1	O6	157.8(3)	W8	02	W6	90.1(2)	O42	Cu1	O45	89.9(4)
08	W1	07	88.9(3)	Si1	02	W6	124.1(4)	O43	Cu1	O29	86.1(3)
O29	W1	01	170.7(3)	Si1	02	W7	123.4(3)	O43	Cu1	O44	89.7(3)
O29	W1	O5	102.2(4)	Si1	02	W8	125.2(4)	O43	Cu1	O45	85.4(3)

O29	W1	O6	98.6(4)	W2	O3	W3	90.3(2)	O44	Cu1	O29	98.3(3)
O29	W1	07	102.4(3)	W12	O3	W2	91.4(2)	O44	Cu1	O45	92.5(4)
O29	W1	08	103.5(4)	W12	O3	W3	91.8(3)	O45	Cu1	O29	166.2(3)
O8	W2	O3	84.1(3)	Si1	O3	W2	125.8(4)	O31	Cu2	O50	164.9(3)
O8	W2	O9	84.9(3)	Si1	O3	W3	124.1(4)	O46	Cu2	O31	88.0(3)
O8	W2	O10	156.7(3)	Si1	O3	W12	123.3(3)	O46	Cu2	O47	89.0(4)
O8	W2	011	90.8(3)	W9	04	W10	91.2(2)	O46	Cu2	O48	176.9(4)
09	W2	O3	83.4(3)	W11	04	W9	91.2(2)	O46	Cu2	O49	91.5(4)
O10	W2	O3	73.3(3)	W11	04	W10	90.5(3)	O46	Cu2	O50	99.4(3)
O10	W2	O9	86.9(3)	Si1	04	W9	124.7(4)	O47	Cu2	O31	109.6(3)
011	W2	O3	74.0(3)	Si1	04	W10	124.2(3)	O47	Cu2	O49	169.3(4)
011	W2	O9	157.3(3)	Si1	04	W11	124.8(4)	O47	Cu2	O50	83.9(4)
011	W2	O10	88.4(3)	W7	O5	W1	150.2(4)	O48	Cu2	O31	89.4(3)
O30	W2	O3	170.9(4)	W1	O6	W5	120.4(4)	O48	Cu2	047	90.4(4)
O30	W2	08	102.8(4)	W4	07	W1	122.9(3)	O48	Cu2	O49	89.7(4)
O30	W2	09	103.0(4)	W2	08	W1	153.4(4)	O48	Cu2	O50	83.5(3)
O30	W2	O10	100.3(4)	W7	O9	W2	151.4(4)	O49	Cu2	O31	81.1(3)
O30	W2	011	99.7(4)	W2	O10	W12	121.4(4)	O49	Cu2	O50	85.5(4)
011	W3	03	73.6(3)	W2	011	W3	122.1(4)				
011	W3	012	87.4(3)	W12	012	W3	122.0(4)				
011	W3	013	157.8(3)	W10	013	W3	151.2(4)				
012	W3	O3	72.5(3)	W4	014	W3	153.3(4)				
013	W3	O3	84.3(3)	W5	015	W4	121.4(4)				
013	W3	012	87.9(3)	W10	O16	W4	151.1(4)				
014	1/1/2	00	04 4/0)	14/0	0.47			_			
014	vv3	03	84.1(3)	W9	017	W10	121.1(4)	B	ond angl	e at the s	Si site
014	W3	03	90.4(3)	W9 W11	017 018	W10 W10	121.1(4) 121.9(4)	A	ond angl B	e at the s	Si site A-B-C [deg]
014 014 014	W3 W3 W3	03 011 012	90.4(3) 156.2(3)	W9 W11 W5	017 018 019	W10 W10 W9	121.1(4) 121.9(4) 152.2(4)	а О1	ond angl B Si1	e at the s	Si site A-B-C [deg] 109.0(4)
014 014 014 014	W3 W3 W3 W3	03 011 012 013	90.4(3) 156.2(3) 85.2(3)	W9 W11 W5 W6	017 018 019 020	W10 W10 W9 W9	121.1(4) 121.9(4) 152.2(4) 153.8(4)	A 01 02	ond angl B Si1 Si1	e at the s C O3 O1	Si site A-B-C [deg] 109.0(4) 109.7(4)
014 014 014 014 031	W3 W3 W3 W3 W3	03 011 012 013 03	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3)	W9 W11 W5 W6 W9	017 018 019 020 021	W10 W10 W9 W9 W11	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3)	A 01 02 02	Si1 Si1 Si1	e at the s C O3 O1 O3	A-B-C [deg] 109.0(4) 109.7(4) 109.1(4) 109.1(4)
014 014 014 014 031 031	W3 W3 W3 W3 W3 W3	03 011 012 013 03 011	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3)	W9 W11 W5 W6 W9 W5	017 018 019 020 021 022	W10 W10 W9 W9 W11 W6	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4)	A 01 02 02 04	Si1 Si1 Si1 Si1 Si1 Si1	e at the s C O3 O1 O3 O1	A-B-C [deg] 109.0(4) 109.7(4) 109.1(4) 109.1(4) 109.5(4) 109.5(4)
014 014 014 031 031 031	W3 W3 W3 W3 W3 W3 W3	03 011 012 013 03 011 012	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4)	W9 W11 W5 W6 W9 W5 W6 W9 W5 W6	017 018 019 020 021 022 023	W10 W10 W9 W11 W6 W7	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4)	A 01 02 02 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	C 03 01 03 01 02	A-B-C [deg] 109.0(4) 109.7(4) 109.1(4) 109.5(4)
014 014 014 014 031 031 031	W3	03 011 012 013 03 011 012 013	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3)	W9 W11 W5 W6 W9 W5 W6 W8	O17 O18 O19 O20 O21 O22 O23 O24	W10 W10 W9 W11 W6 W7 W6	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3)	A 01 02 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O3 O1 O2 O3	A-B-C [deg] 109.0(4) 109.7(4) 109.1(4) 109.5(4) 109.5(4) 109.5(4) 110.0(4) 100.0(4)
014 014 014 014 031 031 031 031 031	W3	011 012 013 03 011 012 013 03 011 012 013 014	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7	O17 O18 O19 O20 O21 O22 O23 O24 O25	 W10 W10 W9 W11 W6 W7 W6 W8 	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4)	A 01 02 02 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1 Si1	C 03 01 03 01 03 01 03 01 03	A-B-C [deg] 109.0(4) 109.7(4) 109.1(4) 109.5(4) 109.5(4) 110.0(4)
014 014 014 014 031 031 031 031 031 031 031	W3	011 012 013 03 011 012 013 014 01	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12	O17 O18 O19 O20 O21 O22 O23 O24 O25 O26	 W10 W10 W9 W11 W6 W7 W6 W8 W8 	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4)	A 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O3 O1 O2 O3	A-B-C [deg] 109.0(4) 109.7(4) 109.7(4) 109.7(4) 109.5(4) 109.5(4) 109.5(4) 110.0(4)
014 014 014 014 031 031 031 031 031 031 031 031 031 031 031 031 031 07 07	W3 W4	011 012 013 03 011 012 013 011 012 013 014 014 014	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8	O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 O27	W10 W10 W9 W11 W6 W7 W8 W8 W11	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4)	A 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O3 O1 O2 O3	A-B-C [deg] 109.0(4) 109.7(4) 109.1(4) 109.5(4) 109.5(4) 109.5(4) 110.0(4) 100.0(4)
014 014 014 014 031 031 031 031 031 031 031 031 031 031 031 031 031 07 07 07	W3 W4 W4	011 012 013 03 011 012 013 011 012 013 011 012 013 014 014 015	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11	O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 O27 O28	W10 W10 W9 W11 W6 W7 W6 W8 W11 W11	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 151.2(5)	A 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O3 O1 O2 O3	A-B-C [deg] 109.0(4) 109.7(4) 109.7(4) 109.7(4) 109.5(4) 109.5(4) 110.0(4) 100.0(4)
014 014 014 014 031 031 031 031 031 031 07 07 07 07 07 07	W3 W3 W3 W3 W3 W3 W3 W3 W3 W4 W4 W4	03 011 012 013 03 011 012 013 014 014 015 016	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W1	O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 O27 O28 O29	 W10 W10 W9 W11 W6 W7 W6 W8 W8 W11 W12 Cu1 	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 151.2(5) 159.4(4)	A 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O3 O1 O2 O3	A-B-C [deg] 109.0(4) 109.7(4) 109.1(4) 109.5(4) 109.5(4) 110.0(4)
014 014 014 014 031 031 031 031 031 031 031 031 031 031 031 031 031 07 07 07 07 07 07 07	W3 W4 W4 W4 W4 W4 W4 W4	011 012 013 03 011 012 013 014 015 016 01	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3) 85.1(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W1 W3	O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 O27 O28 O29 O31	W10 W10 W9 W11 W6 W7 W6 W8 W11 W12 Cu1 Cu2	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 152.5(4) 159.4(4) 149.2(4)	A 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O3 O1 O2 O3	A-B-C [deg] 109.0(4) 109.7(4) 109.1(4) 109.5(4) 109.5(4) 110.0(4)
014 014 014 014 031 031 031 031 031 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07	W3 W3 W3 W3 W3 W3 W3 W3 W3 W4	03 011 012 013 03 011 012 013 014 015 016 015 015	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3) 85.1(3) 157.9(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W1 W3	O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 O27 O28 O29 O31	W10 W10 W9 W11 W6 W8 W11 W12 Cu1 Cu2	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 151.2(5) 159.4(4) 149.2(4)	A 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O3 O1 O2 O3	Si site A-B-C [deg] 109.0(4) 109.7(4) 109.7(4) 109.5(4) 109.5(4) 110.0(4)
014 014 014 014 031 031 031 031 031 07 014	W3 W4	011 012 013 03 011 012 013 011 012 013 014 015 016 015 016	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3) 85.1(3) 157.9(3) 85.1(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W1 W3	O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 O27 O28 O29 O31	 W10 W10 W9 W11 W6 W7 W6 W8 W81 W11 W12 Cu1 Cu2 Cu2 	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 151.2(5) 159.4(4) 149.2(4)	A 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C 03 01 03 01 02 03	A-B-C [deg] 109.0(4) 109.7(4) 109.1(4) 109.5(4) 109.5(4) 110.0(4)
014 014 014 014 031 031 031 031 031 07 014 014 015	W3 W4	03 011 012 013 03 011 012 013 014 015 016 015 016 010 015 010 015 010 015 010 011 015 010 011	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3) 85.1(3) 157.9(3) 85.1(3) 73.2(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W1 W3	017 018 019 020 021 022 023 024 025 026 027 028 029 031	W10 W10 W9 W9 W11 W6 W7 W6 W8 W8 W11 W12 Cu1 Cu2	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 152.5(4) 159.4(4) 149.2(4)	Bit 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O3 O1 O2 O3	Si site A-B-C [deg] 109.0(4) 109.7(4) 109.7(4) 109.5(4) 109.5(4) 110.0(4)
014 014 014 014 031 031 031 031 031 031 031 031 031 031 031 031 031 031 07 <td< td=""><td>W3 W3 W3 W3 W3 W3 W3 W3 W3 W4 W4 </td><td>03 011 012 013 03 011 012 013 014 015 016 015 016 017 018 019 010 011 015 016 01 010 011</td><td>84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3) 85.1(3) 157.9(3) 85.1(3) 73.2(3) 83.8(3)</td><td>W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W1 W3</td><td>017 018 019 020 021 022 023 024 025 026 027 028 029 031</td><td>W10 W10 W9 W9 W11 W6 W7 W6 W8 W8 W11 W12 Cu1 Cu2</td><td>121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 151.2(5) 159.4(4) 149.2(4)</td><td>A 01 02 04 04 04</td><td>Si1 Si1 Si1 Si1 Si1 Si1 Si1</td><td>e at the S C 03 01 03 01 02 03</td><td>A-B-C [deg] 109.0(4) 109.7(4) 109.7(4) 109.7(4) 109.5(4) 109.5(4) 110.0(4) 100.0(4)</td></td<>	W3 W3 W3 W3 W3 W3 W3 W3 W3 W4 W4	03 011 012 013 03 011 012 013 014 015 016 015 016 017 018 019 010 011 015 016 01 010 011	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3) 85.1(3) 157.9(3) 85.1(3) 73.2(3) 83.8(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W1 W3	017 018 019 020 021 022 023 024 025 026 027 028 029 031	W10 W10 W9 W9 W11 W6 W7 W6 W8 W8 W11 W12 Cu1 Cu2	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 151.2(5) 159.4(4) 149.2(4)	A 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C 03 01 03 01 02 03	A-B-C [deg] 109.0(4) 109.7(4) 109.7(4) 109.7(4) 109.5(4) 109.5(4) 110.0(4) 100.0(4)
014 014 014 014 031 031 031 031 031 031 031 031 031 07 014 014 015 016 016	W3 W4	03 011 012 013 03 011 012 013 014 015 016 015 016 011 015 016 017 018 019 0101 0115	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3) 85.1(3) 73.2(3) 83.8(3) 88.4(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W1 W3	017 018 019 020 021 022 023 024 025 026 027 028 029 031	W10 W10 W9 W9 W11 W6 W7 W6 W8 W8 W11 W12 Cu1 Cu2	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 159.4(4) 149.2(4)	Bit 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O2 O3	Si site A-B-C [deg] 109.0(4) 109.7(4) 109.7(4) 109.5(4) 109.5(4) 110.0(4)
014 014 014 014 031 07 07 07 014 014 015 016 032	W3 W4	03 011 012 013 03 011 012 013 014 015 016 01 015 016 01 015 016 01 015 016 01 015 016 01 015 010 010	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3) 85.1(3) 73.2(3) 83.8(3) 88.4(3) 170.6(4)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W3	017 018 019 020 021 022 023 024 025 026 027 028 029 031 029 031	W10 W10 W9 W9 W11 W6 W7 W6 W8 W8 W11 W12 Cu1 Cu2	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 151.2(5) 159.4(4) 149.2(4)	Bit 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O3 O1 O2 O3	Si site A-B-C [deg] 109.0(4) 109.7(4) 109.7(4) 109.7(4) 109.5(4) 109.5(4) 110.0(4) 100.0(4)
014 014 014 014 031 07	W3 W4 W4 W4	03 011 012 013 03 011 012 013 014 015 016 015 016 011 015 016 017 018 019 0101 0101 015 016 01 015 016 01 0107	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 85.1(3) 157.9(3) 85.1(3) 73.2(3) 83.8(3) 88.4(3) 170.6(4) 101.5(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W1 W3	017 018 019 020 021 022 023 024 025 026 027 028 029 031 021 025 026 027 028 029 031	W10 W10 W9 W9 W11 W6 W7 W6 W8 W8 W11 W12 Cu1 Cu2	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 159.4(4) 149.2(4) 	Bit 01 02 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O2 O3 O3	Si site A-B-C [deg] 109.0(4) 109.7(4) 109.1(4) 109.5(4) 109.5(4) 110.0(4)
014 014 014 014 031 07 07 07 07 07 07 014 014 015 016 032 032 032	W3 W4 W4 W4	03 011 012 013 03 011 012 013 014 015 016 01 015 016 01 015 016 01 015 016 01 015 016 01 015 016 01 015 016 01 015 016 01 015 01 015 01 015 01 015 01 015 01 07 014	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3) 85.1(3) 73.2(3) 83.8(3) 88.4(3) 170.6(4) 103.2(4)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W1 W3	017 018 019 020 021 022 023 024 025 026 027 028 029 031 029 031	W10 W10 W9 W9 W11 W6 W7 W6 W8 W8 W11 W12 Cu1 Cu2	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(3) 152.5(4) 152.5(4) 152.5(4) 159.4(4) 149.2(4)	Bit 01 02 02 04 04 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O2 O3 O3	A-B-C [deg] 109.0(4) 109.7(4) 109.7(4) 109.5(4) 109.5(4) 110.0(4)
014 014 014 014 031 031 031 031 031 031 031 031 031 031 031 031 031 031 031 031 031 031 031 07 07 07 07 07 014 015 016 032 032 032	W3 W4 W4	03 011 012 013 03 011 012 013 014 015 016 01 015 016 01 015 016 01 015 016 01 015 016 011 015 016 011 015 016 011 015 016 011 015 011 015 014 015	84.1(3) 90.4(3) 156.2(3) 85.2(3) 169.9(3) 100.3(3) 99.6(4) 101.9(3) 104.1(3) 73.7(3) 89.8(3) 88.0(3) 157.3(3) 85.1(3) 73.2(3) 83.8(3) 88.4(3) 170.6(4) 103.2(4) 98.7(3)	W9 W11 W5 W6 W9 W5 W6 W8 W7 W12 W8 W11 W3	017 018 019 020 021 022 023 024 025 026 027 028 029 031 029 031	W10 W10 W9 W9 W11 W6 W7 W6 W8 W8 W11 W12 Cu1 Cu2	121.1(4) 121.9(4) 152.2(4) 153.8(4) 120.9(3) 149.5(4) 120.5(4) 121.2(3) 121.2(4) 152.5(4) 152.5(4) 159.4(4) 149.2(4) 	Bit 01 02 02 04 04 04 04 04	Si1 Si1 Si1 Si1 Si1 Si1 Si1	e at the S C O3 O1 O3 O1 O2 O3	Si site A-B-C [deg] 109.0(4) 109.7(4) 109.7(4) 109.7(4) 109.5(4) 109.5(4) 110.0(4) 100.0(4)

ſ	O6	W5	01	74.0(3)					
Ī	O15	W5	01	73.9(3)					
ľ	O15	W5	O6	87.1(3)					
ľ	019	W5	01	85.6(3)					
Ī	019	W5	O6	159.4(3)					
Ī	019	W5	O15	90.3(3)					
Ī	019	W5	O22	87.4(3)					
Ī	O22	W5	01	83.9(3)					
Ī	O22	W5	O6	87.4(3)					
	O22	W5	O15	157.8(3)					
	O33	W5	01	170.6(3)					
	O33	W5	O6	98.7(4)					
	O33	W5	O15	100.1(3)					
	O33	W5	O19	101.9(4)					
	O33	W5	O22	101.9(3)					
	O20	W6	O2	83.5(3)					
	O20	W6	O22	86.4(3)					
	O20	W6	O23	156.8(3)					
	O20	W6	024	90.0(3)					
	022	W6	02	83.4(3)					
	022	W6	023	87.4(3)					
	023	W6	02	73.5(3)					
	024	W6	02	74.1(2)					
	024	W6	022	157.4(3)					
	024	W6	023	87.2(3)					
	034	W6	02	172.0(3)					
	034	W6	020	103.6(3)					
L	034	W6	022	100.6(3)					
L	034	W6	023	99.6(3)					
ļ	034	VV6	024	101.9(3)					
ŀ	05	VV7	02	84.4(3)					
ļ	05	VV7	023	87.3(3)					
ļ	05	VV7	025	158.1(3)					
ŀ	09	VV7	02	86.6(3)					
ŀ	09	VV /	05	87.1(3)					
ŀ	09	VV /	023	159.6(3)					
ŀ	09	VV /	025	91.3(3)					
ļ	023	VV /	02	73.4(3)					
ļ	025	VV /	02	73.7(3)					
ļ	025	VV /	023	86.7(3)					
ŀ	035	VV /	02	168.1(3)			 		
ŀ	035	VV /	00	102.0(4)					
ŀ	035		09	103.3(4)	 	 	 		
	035	VV /	023	97.1(4) 00.2(4)			 		
	033	VV / \\/\8	025	33.2(4) 74 7(2)			 		
	024	W0 W8	025	88 A(2)			 		
	024	VVO \\/Q	025	00.4(3)			 		
ŀ	024	VVO \//8	020	73 3(2)					
1	025	000	02	10.0(0)					

	O26	W8	02	82.3(3)				
ľ	O26	W8	O25	86.4(3)				
ľ	O27	W8	02	84.3(3)				
ľ	O27	W8	O24	91.0(3)				
	027	W8	O25	156.9(3)				
	027	W8	O26	85.2(3)				
	O36	W8	02	170.4(4)				
	O36	W8	O24	100.5(3)				
	O36	W8	O25	98.5(4)				
	O36	W8	O26	102.5(3)				
	O36	W8	027	104.3(4)				
	017	W9	04	74.3(3)				
	017	W9	O19	90.0(3)				
	017	W9	021	88.8(3)				
	019	W9	04	84.7(3)				
	019	W9	021	158.2(3)			 	
	O20	W9	04	83.4(3)				
	020	W9	017	157.4(3)				
	020	W9	019	84.0(3)				
	020	W9	021	88.9(3)			 	
	021	W9	04	73.9(3)			 	
	040	W9	04	172.3(3)			 	
	040	W9	017	101.5(4)			 	
	040	W9	019	101.8(4)				
	040	W9	020	101.1(4)				
	040	W9	021	99.8(3)				
	013	W10	04	84.5(3)				
	013	W10	016	87.3(3)				
	013	W10	017	157.6(3)				
	013	W10	018	90.2(3)				
	016	W10	04	83.3(3)				
	016	W10	017	87.5(3)				
	016	W10	018	156.6(3)				
	017	W10	04	73.3(3)				
	018	W10	04	73.3(3)				
	018	W10	017	86.0(3)				
	039	W10	04	1/1.1(3)				
	039	W10	013	102.5(3)				
	039	W10	016	102.4(3)				
	039	W10	017	99.9(3)				
	039	W10	018	100.8(4)				
	018	VV11	04	74.2(3)				
	018	VV11	021	87.2(3)				
	018	VV11	027	157.7(3)			 	
	021	VV11	04	/3.8(3)			 	
	027	VV11	04	83.5(3)			 	
	027	VV11	021	87.4(3)			 	
	028	VV11	04	84.2(3)				
	028	VV11	018	90.8(3)				

O28	W11	O21	157.7(3)				
O28	W11	027	86.1(3)				
O38	W11	04	169.4(3)				
O38	W11	O18	99.9(4)				
O38	W11	O21	97.3(3)				
O38	W11	027	102.2(3)				
O38	W11	O28	104.9(4)				
O10	W12	O3	73.8(3)				
O10	W12	O28	158.7(3)				
012	W12	O3	73.6(3)				
012	W12	O10	88.0(3)				
012	W12	O28	87.7(3)				
O26	W12	O3	84.9(3)				
O26	W12	O10	90.5(3)				
O26	W12	012	158.0(3)				
O26	W12	O28	85.8(3)				
O28	W12	O3	84.9(3)				
O37	W12	O3	171.2(3)				
O37	W12	O10	100.4(3)				
O37	W12	012	99.8(4)				
O37	W12	O26	102.0(3)				
O37	W12	O28	100.9(4)				

Table S5. Computed atomic positions of monoclinic **2***c* compared with experimental values determined by single crystal X-ray diffraction measured at 123 K. The table also shows experimental values of selected bond distances. **CCDC number: 1466493.**

		Ato	mic positions				E	Bond dista	ances
		Experiment			DFT		Α	В	A-B [Å]
	x	У	z	x	У	z			
W1	0.93967(3)	0.83543(2)	0.31103(2)	0.9352	0.8360	0.3089	W1	01	2.364(5)
W2	0.10777(3)	0.71607(2)	0.22926(2)	0.1097	0.7163	0.2282	W1	O5	1.903(6)
W3	0.94175(2)	0.61015(2)	0.28684(2)	0.9424	0.6083	0.2877	W1	O6	1.923(5)
W4	0.77198(2)	0.72928(2)	0.36715(2)	0.7674	0.7276	0.3683	W1	07	1.913(6)
W5	0.86711(2)	0.82797(2)	0.51763(2)	0.8614	0.8289	0.5180	W1	O8	1.905(5)
W6	0.14199(2)	0.82072(2)	0.60215(2)	0.1403	0.8255	0.6021	W1	O29	1.705(5)
W7	0.21567(3)	0.82405(2)	0.39487(2)	0.2138	0.8282	0.3937	W2	O3	2.364(5)
W8	0.29596(3)	0.71355(2)	0.53347(2)	0.2985	0.7170	0.5354	W2	O8	1.893(5)
W9	0.95637(3)	0.70318(2)	0.66286(2)	0.9561	0.7047	0.6665	W2	O9	1.923(5)
W10	0.8611(2)	0.60315(2)	0.51161(2)	0.8613	0.6012	0.5153	W2	O10	1.923(6)
W11	0.11031(2)	0.59581(2)	0.58898(2)	0.1138	0.5960	0.5938	W2	011	1.894(5)
W12	0.19272(2)	0.60568(2)	0.36483(2)	0.1971	0.6063	0.3673	W2	O30	1.706(5)
Cu1	0.95282(8)	0.99911(5)	0.16140(7)	0.9526	0.9973	0.1610	W3	O3	2.356(5)
Cu2	0.87164(8)	0.48016(5)	0.10238(7)	0.8746	0.4794	0.1004	W3	011	1.912(5)
Si1	0.03377(17)	0.71535(9)	0.44822(13)	0.0339	0.7160	0.4501	W3	012	1.907(6)
01	0.938(4)	0.7612(2)	0.4214(3)	0.9348	0.7612	0.4224	W3	013	1.929(5)
02	0.1359(4)	0.7549(2)	0.4812(3)	0.1364	0.7572	0.4833	W3	014	1.902(5)
O3	0.06(4)	0.6760(2)	0.3631(3)	0.0619	0.6755	0.3645	W3	O31	1.716(5)
O4	0.0028(4)	0.6702(2)	0.5255(3)	0.0035	0.6703	0.5297	W4	01	2.347(5)

O5	0.076(4)	0.8502(3)	0.3631(4)	0.0738	0.8529	0.3593	W4	07	1.900(6)
O6	0.8846(4)	0.8731(2)	0.4104(3)	0.8779	0.8733	0.4099	W4	O14	1.905(6)
07	0.811(4)	0.7926(2)	0.2931(3)	0.8044	0.7917	0.2923	W4	O15	1.922(6)
O8	0.004(4)	0.7742(2)	0.2470(3)	0.0016	0.7736	0.2455	W4	O16	1.909(5)
O9	0.1958(4)	0.7675(2)	0.3038(3)	0.1955	0.7687	0.3039	W4	O32	1.705(6)
O10	0.2046(4)	0.6524(2)	0.2608(4)	0.2086	0.6519	0.2609	W5	01	2.328(5)
011	0.0056(4)	0.6565(2)	0.2006(3)	0.0069	0.6548	0.1999	W5	O6	1.954(5)
012	0.07(4)	0.5680(2)	0.3080(3)	0.0750	0.5662	0.3100	W5	O15	1.911(5)
013	0.9082(4)	0.5858(2)	0.4020(3)	0.9102	0.5846	0.4045	W5	O19	1.890(5)
014	0.8448(4)	0.6734(2)	0.3001(3)	0.8430	0.6712	0.3010	W5	O22	1.897(6)
O15	0.7521(4)	0.7886(2)	0.4556(3)	0.7458	0.7881	0.4566	W5	O33	1.706(6)
O16	0.7904(4)	0.6704(2)	0.4576(3)	0.7898	0.6688	0.4612	W6	02	2.359(5)
017	0.854(4)	0.6452(2)	0.6238(3)	0.8533	0.6430	0.6289	W6	O20	1.895(5)
O18	0.9766(4)	0.5594(2)	0.5676(3)	0.9791	0.5580	0.5719	W6	022	1.916(5)
O19	0.8789(4)	0.7637(2)	0.5985(3)	0.8752	0.7636	0.5984	W6	O23	1.927(5)
O20	0.0695(4)	0.7578(2)	0.6546(3)	0.0690	0.7606	0.6559	W6	O24	1.920(5)
O21	0.054(4)	0.6391(2)	0.6849(3)	0.0549	0.6393	0.6908	W6	O34	1.703(5)
022	0.0084(4)	0.8455(2)	0.5513(3)	0.0034	0.8477	0.5533	W7	02	2.320(5)
O23	0.2038(4)	0.8626(2)	0.5091(3)	0.2021	0.8677	0.5078	W7	O5	1.920(6)
024	0.2671(4)	0.7737(2)	0.6154(3)	0.2677	0.7788	0.6173	W7	O9	1.882(5)
O25	0.3247(4)	0.7766(2)	0.4524(4)	0.3271	0.7812	0.4532	W7	O23	1.968(5)
O26	0.2706(4)	0.6622(2)	0.4318(3)	0.2752	0.6649	0.4336	W7	O25	1.917(5)
027	0.2144(4)	0.6571(3)	0.5888(3)	0.2173	0.6597	0.5929	W7	O35	1.691(6)
O28	0.1409(4)	0.5804(2)	0.4736(3)	0.1467	0.5806	0.4776	W8	02	2.344(5)
O29	0.9226(4)	0.8931(3)	0.2379(3)	0.9146	0.8936	0.2335	W8	O24	1.890(5)
O30	0.1431(4)	0.7334(2)	0.1274(3)	0.1460	0.7350	0.1247	W8	O25	1.928(6)
O31	0.8736(4)	0.5587(3)	0.2216(3)	0.8757	0.5547	0.2235	W8	O26	1.939(5)
O32	0.6453(4)	0.7169(3)	0.3315(4)	0.6382	0.7131	0.3335	W8	027	1.881(6)
O33	0.8043(4)	0.8813(2)	0.5739(3)	0.7960	0.8833	0.5767	W8	O36	1.711(6)
O34	0.1624(4)	0.8724(2)	0.6837(3)	0.1604	0.8784	0.6849	W9	04	2.352(5)
O35	0.2877(5)	0.8786(3)	0.3520(4)	0.2897	0.8820	0.3478	W9	017	1.907(5)
O36	0.4209(4)	0.6946(3)	0.5682(4)	0.4263	0.6988	0.5694	W9	O19	1.904(5)
037	0.282(4)	0.5507(3)	0.3503(4)	0.2896	0.5504	0.3537	W9	O20	1.908(5)
O38	0.1732(4)	0.5402(3)	0.6490(4)	0.1792	0.5401	0.6550	W9	O21	1.913(5)
O39	0.7634(4)	0.5517(2)	0.5189(4)	0.7620	0.5484	0.5219	W9	O40	1.693(5)
040	0.924(4)	0.7159(2)	0.7661(3)	0.9212	0.7201	0.7708	W10	04	2.354(5)
041	0.0192(5)	0.0389(3)	0.2652(4)	0.0180	0.0382	0.2660	W10	013	1.872(5)
042	0.0837(4)	0.9587(3)	0.1451(4)	0.0856	0.9557	0.1549	W10	O16	1.904(5)
043	0.8792(4)	0.9634(3)	0.0560(4)	0.8790	0.9614	0.0566	W10	017	1.966(5)
044	0.8243(4)	0.0395(3)	0.1873(4)	0.8252	0.0420	0.1806	W10	O18	1.925(5)
045	0.999(5)	0.0818(3)	0.0651(4)	0.9998	0.0807	0.0577	W10	O39	1.711(5)
046	0.7223(5)	0.4788(3)	0.1063(4)	0.7227	0.4807	0.1062	W11	04	2.322(5)
047	0.877(5)	0.3988(3)	0.1529(4)	0.8759	0.3949	0.1456	W11	018	1.909(5)
048	0.0239(4)	0.4826(3)	0.1096(4)	0.0299	0.4794	0.1067	W11	021	1.945(5)
049	0.8666(5)	0.5558(3)	0.0325(4)	0.8734	0.5560	0.0322	W11	027	1.911(6)
050	0.8901(5)	0.4257(3)	0.9604(4)	0.8983	0.4238	0.9521	W11	028	1.875(5)
051W	0.0898(5)	0.9712(3)	0.4824(5)	0.0963	0.9874	0.4716	W11	O38	1.708(6)
052W	0.1269(5)	0.4571(3)	0.2585(4)	0.1330	0.4606	0.2565	W12	03	2.315(5)
O53W	0.1099(5)	0.8547(3)	0.0720(4)	0.1055	0.8554	0.0700	W12	O10	1.919(6)

O54W	0.4514(5)	0.6550(3)	0.2928(4)	0.4600	0.6507	0.2989	W12	012	1.937(5)
O55W	0.2027(5)	0.0038(3)	0.3398(4)	0.2056	0.0054	0.3303	W12	O26	1.866(5)
O56W	0.0326(5)	0.6773(3)	0.9594(4)	0.0256	0.6748	0.9649	W12	O28	1.930(5)
H1				0.5866	0.4782	0.5403	W12	O37	1.705(6)
H2				0.7208	0.5153	0.5820	Cu1	O29	2.672(6)
H3				0.8083	0.0074	0.7046	Cu1	041	1.960(6)
H4				0.8532	0.0793	0.7116	Cu1	O42	1.944(6)
H5				-0.0370	0.6699	-0.0765	Cu1	O43	1.978(6)
H6				0.0844	0.6723	-0.0823	Cu1	O44	1.953(6)
H7				0.1113	0.8210	0.7118	Cu1	O45	2.458(6)
H8				0.2193	0.8229	0.6939	Cu2	O31	2.526(5)
H9				0.8826	0.4522	0.6543	Cu2	O46	1.933(6)
H10				-0.0341	0.5148	0.7051	Cu2	047	1.965(6)
H11				-0.0029	0.8072	0.0445	Cu2	O48	1.960(6)
H12				0.0848	0.7931	0.0103	Cu2	O49	1.991(6)
H13				-0.0009	-0.0137	0.3573	Cu2	O50	2.519(6)
H14				-0.0259	-0.0845	0.3783	Si1	01	1.629(5)
H15				0.7776	0.0830	0.2493	Si1	02	1.631(5)
H16				0.8093	0.0207	0.2178	Si1	O3	1.629(5)
H17				0.5842	0.0120	0.3200	Si1	04	1.626(6)
H18				0.5908	0.0652	0.2618			
H19				-0.0826	-0.0552	0.4908			
H20				0.8031	-0.0070	0.4723			
H21				-0.0803	0.1038	0.4773			
H22				-0.0758	0.1100	0.3951			
H23				0.2194	0.4191	0.5261			
H24				0.0693	0.4502	0.4721			
H25				0.3767	0.5034	0.5526			
H26				0.4164	0.5623	0.6134			
H27				0.1122	0.5933	0.4379			
H28				0.0240	0.6120	0.4694			
H29				0.0344	0.4768	0.5916			
H30				0.1018	0.5334	0.6671		1	
H31				0.1902	0.6336	0.6081		1	
H32				0.3094	0.6142	0.7091			

Table S6: Experimental values of selected bond angles at the Cu (Cu1 and Cu2), Si, W and O sites for the monoclinic $[Cu_2(H_2O)_{10}SiW_{12}O_{40}] \cdot 6H_2O$ structure (**2***c*) measured at 123 K. **CCDC number: 1466493.**

В	ond angl	e at the V	V site	Bond angle at the O site				Bond angle at the Cu site			
Α	В	С	A-B-C [deg]	A	В	С	A-B-C [deg]	Α	В	С	A-B-C [deg]
O5	W1	01	83.1(3)	W4	01	W1	90.83(17)	O41	Cu1	O29	96.3(2)
O5	W1	O6	88.4(3)	W5	01	W1	92.11(18)	O41	Cu1	O43	176.2(3)
O5	W1	07	155.5(3)	W5	01	W4	91.40(18)	O41	Cu1	O44	92.3(2)
O6	W1	01	73.7(3)	Si1	01	W1	124.6(3)	O41	Cu1	O45	79.0(2)
07	W1	01	72.6(3)	Si1	01	W4	123.7(3)	O42	Cu1	O29	89.0(3)
07	W1	O6	87.6(3)	Si1	01	W5	124.4(3)	O42	Cu1	O41	94.4(2)
08	W1	01	84.3(3)	W7	02	W6	92.87(18)	O42	Cu1	O43	175.7(3)

08	W1	O5	85.7(3)	W7	02	W8	92.10(18)	O42	Cu1	044	90.8(2)
O8	W1	O6	157.8(3)	W8	02	W6	89.89(18)	O42	Cu1	O45	85.9(2)
O8	W1	07	88.9(3)	Si1	02	W6	123.7(3)	O43	Cu1	O29	86.1(2)
O29	W1	01	170.7(3)	Si1	02	W7	124.2(3)	O43	Cu1	O44	99.2(2)
O29	W1	O5	102.2(4)	Si1	02	W8	124.4(3)	O43	Cu1	O45	87.3(2)
O29	W1	O6	98.6(4)	W2	O3	W3	90.25(17)	O44	Cu1	O29	89.4(2)
O29	W1	07	102.4(3)	W12	O3	W2	91.23(18)	O44	Cu1	O45	91.6(2)
O29	W1	08	103.5(4)	W12	O3	W3	92.18(18)	O45	Cu1	O29	166.45(18)
O8	W2	O3	84.1(3)	Si1	O3	W2	125.4(3)	O31	Cu2	O50	86.7(2)
O8	W2	09	84.9(3)	Si1	O3	W3	124.4(3)	O46	Cu2	O31	88.7(3)
O8	W2	O10	156.7(3)	Si1	O3	W12	123.5(3)	O46	Cu2	047	174.9(3)
O8	W2	011	90.8(3)	W9	04	W10	91.62(19)	O46	Cu2	O48	92.2(3)
O9	W2	O3	83.4(3)	W11	04	W9	91.76(18)	O46	Cu2	O49	100.4(2)
O10	W2	O3	73.3(3)	W11	04	W10	91.30(19)	O46	Cu2	O50	110.5(2)
O10	W2	09	86.9(3)	Si1	04	W9	123.8(3)	O47	Cu2	O31	170.6(2)
011	W2	O3	74.0(3)	Si1	04	W10	123.8(3)	O47	Cu2	O49	84.1(2)
011	W2	09	157.3(3)	Si1	04	W11	124.9(3)	O47	Cu2	O50	89.2(2)
011	W2	O10	88.4(3)	W7	O5	W1	150.8(3)	O48	Cu2	O31	89.9(3)
O30	W2	03	170.9(4)	W1	O6	W5	121.3(3)	O48	Cu2	047	89.9(2)
O30	W2	08	102.8(4)	W4	07	W1	123.3(3)	O48	Cu2	O49	84.3(2)
O30	W2	09	103.0(4)	W2	O8	W1	154.3(3)	O48	Cu2	O50	78.8(2)
O30	W2	O10	100.3(4)	W7	O9	W2	151.4(3)	O49	Cu2	O31	86.6(2)
O30	W2	011	99.7(4)	W2	O10	W12	121.0(3)	O49	Cu2	O50	164.1(2)
011	W3	O3	73.6(3)	W2	011	W3	123.0(3)				
011	W3	012	87.4(3)	W12	012	W3	122.2(3)				
011	W3	013	157.8(3)	W10	O13	W3	151.3(3)				
012	W3	O3	72.5(3)	W4	014	W3	153.5(3)				
013	W3	O3	84.3(3)	W5	O15	W4	121.6(3)				
013	W3	012	87.9(3)	W10	O16	W4	151.9(3)				
014	W3	O3	84.1(3)	W9	017	W10	121.2(3)	В	ond ang	le at the	Si site
014	W3	011	90.4(3)	W11	O18	W10	121.4(3)	Α	В	С	A-B-C
014	W3	012	156 2(3)	W5	019	W9	152 3(3)	01	Si1	03	[deg] 108 7(3)
014	W3	012	85 2(3)	W6	020	W9	154 4(3)	02	Si1	01	109.5(3)
031	W3	03	169.9(3)	W9	021	W11	120 8(3)	02	Si1	03	108.9(3)
031	W3	011	100.3(3)	W5	022	W6	150 1(3)	04	Si1	01	110 2(3)
031	W3	012	99.6(4)	W6	023	W7	121.0(3)	04	Si1	02	110.1(3)
031	W3	013	101.9(3)	W8	024	W6	121.4(3)	04	Si1	03	109.4(3)
031	W3	014	104.1(3)	W7	O25	W8	121.6(3)	-	-		
07	W4	01	73.7(3)	W12	O26	W8	152.7(3)				
07	W4	014	89.8(3)	W8	027	W11	153.2(3)				
07	W4	O15	88.0(3)	W11	O28	W12	151.2(3)				
07	W4	O16	157.3(3)	W1	O29	Cu1	159.1(3)				
014	W4	01	85.1(3)	W3	O31	Cu2	149.1(3)				
014	W4	O15	157.9(3)								
014	W4	O16	85.1(3)								
L	1	I			ļ						
O15	W4	01	73.2(3)								
O15 O16	W4 W4	01 01	73.2(3) 83.8(3)								

O32	W4	01	170.6(4)							
O32	W4	07	101.5(3)							
O32	W4	014	103.2(4)							
O32	W4	O15	98.7(3)							
032	W4	O16	101.2(3)							
O6	W5	01	74.0(3)							
O15	W5	01	73.9(3)							
015	W5	O6	87.1(3)							
O19	W5	01	85.6(3)							
019	W5	O6	159.4(3)							
O19	W5	O15	90.3(3)							
O19	W5	O22	87.4(3)							
022	W5	01	83.9(3)							
022	W5	O6	87.4(3)							
022	W5	O15	157.8(3)							
O33	W5	01	170.6(3)							
O33	W5	O6	98.7(4)							
O33	W5	O15	100.1(3)							
O33	W5	O19	101.9(4)							
O33	W5	O22	101.9(3)							
O20	W6	02	83.5(3)							
O20	W6	O22	86.4(3)							
O20	W6	O23	156.8(3)							
O20	W6	O24	90.0(3)							
022	W6	02	83.4(3)							
022	W6	O23	87.4(3)							
O23	W6	02	73.5(3)							
024	W6	02	74.1(2)							
024	W6	022	157.4(3)							
024	W6	O23	87.2(3)							
O34	W6	02	172.0(3)							
034	W6	O20	103.6(3)							
O34	W6	022	100.6(3)							
O34	W6	O23	99.6(3)							
034	W6	024	101.9(3)							
05	W7	02	84.4(3)							
05	W7	023	87.3(3)							
05	W7	O25	158.1(3)							
09	W7	02	86.6(3)							
09	W7	O5	87.1(3)							
09	W7	023	159.6(3)							
09	W7	025	91.3(3)							
023	W7	02	73.4(3)							
025	W7	02	73.7(3)							
025	W7	023	86.7(3)							
035	W7	02	168.1(3)							
035	W7	05	102.5(4)							
035	W7	09	103.3(4)							
O35	W7	023	97.1(4)							

-		-							
O35	W7	O25	99.2(4)						
024	W8	02	74.7(3)						
024	W8	025	88.4(3)						
024	W8	026	156.9(3)						
025	W8	02	73.3(3)						
O26	W8	02	82.3(3)						
026	W8	025	86.4(3)						
027	W8	02	84.3(3)						
027	W8	024	91.0(3)		 				
027	W8	025	156.9(3)		 				
027	VV8	026	85.2(3)						
036	W8	02	1/0.4(4)						
036	VV8	024	100.5(3)						
036	VV8	025	98.5(4)						
036	VV8	026	102.5(3)						
036	VV8	027	104.3(4)						
017	W9	04	74.3(3)						
017	VV9	019	90.0(3)						
017	VV9	021	88.8(3)						
019	W9	04	84.7(3)						
019	W9	021	158.2(3)						
020	W9	04	83.4(3)		 				
020	VV9	017	157.4(3)		 				
020	VV9 W0	019	04.0(3)						
020	W9	021	73.0(3)						
021	W9	04	172 2(2)						
040	W9 W0	04	101 5(4)						
040	W9 W0	017	101.3(4)						
040	W9 W0	019	101.0(+)						
040	W9 W0	020	00.8(3)						
040	W10	021	99.0(3) 84.5(3)		 				
013	W10	016	87 3(3)						
013	W10	017	157 6(3)						
013	W10	017	90 2(3)		 				
015	W10	04	83 3(3)		 				
016	W10	017	87 5(3)		 				
016	W10	018	156 6(3)		 				
017	W10	04	73 3(3)		 				
018	W10	04	73 3(3)		 				
018	W10	017	86.0(3)		 				
0.39	W10	04	171 1(3)						
039	W10	013	102 5(3)						
039	W10	016	102.3(0)						
039	W10	017	99.9(3)						
039	W10	018	100 8(4)						
018	W11	04	74,2(3)						
018	W11	021	87.2(3)						
018	W11	027	157.7(3)						
	1			1		1	1	1	

O21	W11	04	73.8(3)				
027	W11	04	83.5(3)				
027	W11	O21	87.4(3)				
O28	W11	O4	84.2(3)				
O28	W11	O18	90.8(3)				
O28	W11	O21	157.7(3)				
O28	W11	027	86.1(3)				
O38	W11	04	169.4(3)				
O38	W11	O18	99.9(4)				
O38	W11	O21	97.3(3)				
O38	W11	O27	102.2(3)				
O38	W11	O28	104.9(4)				
O10	W12	O3	73.8(3)				
O10	W12	O28	158.7(3)				
012	W12	O3	73.6(3)				
012	W12	O10	88.0(3)				
012	W12	O28	87.7(3)				
O26	W12	O3	84.9(3)				
O26	W12	O10	90.5(3)				
O26	W12	012	158.0(3)				
O26	W12	O28	85.8(3)				
O28	W12	O3	84.9(3)				
O37	W12	O3	171.2(3)				
O37	W12	O10	100.4(3)				
O37	W12	012	99.8(4)				
O37	W12	O26	102.0(3)				
O37	W12	O28	100.9(4)				

Table S7. Computed atomic positions of triclinic $[Cu_2(H_2O)_{10}SiW_{12}O_{40}]\cdot 6H_2O$ (2*t*) compared with experimental values determined by single crystal X-ray diffraction. The table also shows experimental values of selected bond distances. **CCDC number: 1420706**.

			Atomic positio	ns			В	ond dist	ances
		Experiment			DFT		Α	В	A-B [Å]
	x	У	z	x	У	z			
W1	0.47090(3)	0.41458(2)	0.28571(2)	0.4690	0.4132	0.2908	W1	01	2.350(5)
W2	0.22074(3)	0.47854(2)	0.43850(2)	0.2141	0.4802	0.4463	W1	O5	1.912(5)
W3	0.30360(3)	0.68905(2)	0.45835(2)	0.2966	0.6964	0.4600	W1	O6	1.908(5)
W4	0.55388(3)	0.62439(2)	0.30547(2)	0.5523	0.6273	0.3054	W1	07	1.889(5)
W5	0.54819(3)	0.63955(2)	0.06014(2)	0.5540	0.6362	0.0576	W1	08	1.921(5)
W6	0.21193(3)	0.50021(2)	0.21477(2)	0.2076	0.4974	0.2207	W1	O29	1.720(5)
W7	0.29248(3)	0.72174(2)	-0.01037(2)	0.2971	0.7178	-0.0130	W2	01	2.354(5)
W8	0.36539(3)	0.91451(2)	0.00620(2)	0.3682	0.9152	-0.0009	W2	08	1.902(5)
W9	0.01398(3)	0.80189(2)	0.15480(2)	0.0095	0.8019	0.1544	W2	09	1.910(5)
W10	0.02187(3)	0.77900(2)	0.37998(2)	0.0138	0.7836	0.3820	W2	O10	1.921(5)
W11	0.37253(3)	0.89673(2)	0.25108(2)	0.3677	0.9032	0.2475	W2	011	1.923(5)
W12	0.08836(3)	0.99039(2)	0.17564(2)	0.0837	0.9953	0.1686	W2	O36	1.703(5)
Cu1	0.64647(8)	0.07946(8)	0.37995(7)	0.6463	0.0754	0.3779	W3	02	2.342(5)
Cu2	-0.04195(8)	1.33200(8)	0.15613(7)	-0.0463	0.3292	0.1641	W3	011	1.877(5)
Si1	0.28824(16)	0.70452(15)	0.22671(14)	0.2860	0.7060	0.2259	W3	012	1.904(5)
01	0.2952(4)	0.5719(4)	0.2743(4)	0.2926	0.5719	0.2766	W3	013	1.940(5)
02	0.3558(4)	0.7229(4)	0.2886(4)	0.3516	0.7269	0.2879	W3	014	1.919(5)
O3	0.3507(4)	0.7339(4)	0.1119(3)	0.3516	0.7347	0.1078	W3	O31	1.707(5)

04	0.1524(4)	0.7874(4)	0.2334(4)	0.1473	0.7905	0.2318	W4	02	2.343(5)
O5	0.5195(4)	0.5045(4)	0.1535(4)	0.5199	0.5048	0.1544	W4	07	1.910(5)
06	0.3694(4)	0.3930(4)	0.2348(4)	0.3681	0.3902	0.2388	W4	012	1.914(5)
07	0.5215(4)	0 4949(4)	0.3250(4)	0.5213	0.4965	0.3268	W4	027	1,917(5)
08	0.3744(4)	0.3770(4)	0.4125(4)	0.3713	0.3781	0.4199	W/4	028	1.017(0)
09	0 1688(4)	0.4436(4)	0.3568(4)	0.1672	0 4400	0.3645	W4	030	1,706(5)
010	0.0899(4)	0.4400(4)	0.4157(4)	0.0825	0.6227	0.4200	W5	03	2 350(5)
011	0.0000(4)	0.5584(4)	0.4688(4)	0.2786	0.5628	0.1200	W5	05	1.896(5)
012	0.2002(4)	0.6108(4)	0.4000(4)	0.4652	0.6247	0.4367	W5	021	1.000(0)
012	0.4034(4)	0.8349(4)	0.3030(4)	0.4002	0.0247	0.4007	W5	021	1.943(5)
014	0.3200(4) 0.1481(4)	0.0049(4)	0.3333(4) 0.4260(4)	0.0210	0.0427	0.0020	W5	020	1.910(5)
015	0.0576(4)	0.7886(4)	0.4200(4)	-0.0643	0.77017	0.4204	W5	027	1.000(0)
015	-0.0070(4)	0.7000(4)	0.2091(4)	-0.0043	0.7317	0.2300	W6	039	2 325(5)
017	-0.0002(4)	0.9407(4)	0.3047(4) 0.1277(4)	-0.0072	0.3403	0.0000	W6	06	1.041(5)
018	-0.0032(+)	0.9343(4)	0.1277(4)	0.2070	0.000	0.1217	W6	00	1.941(5)
010	0.2075(4)	0.9731(4)	0.0009(4)	0.2070	0.9720	0.0391	We	09	1.931(3)
019	0.2100(4)	0.9009(4)	0.2309(4)	0.2005	0.9090	0.2310	We	024	1.073(3)
020	0.4036(4)	0.9000(4)	0.1102(4)	0.4050	0.9105	0.1120	We	025	1.907(5)
021	0.3174(4)	0.8022(4)	-0.0106(4)	0.3232	0.0009	-0.0205	VVO	037	1.704(5)
022	0.3142(4)	0.8676(4)	-0.0674(4)	0.3175	0.0009	-0.0752	VV /	03	2.328(5)
023	0.1380(4)	0.7923(4)	0.0485(4)	0.1379	0.7904	0.0454	VV /	022	1.936(5)
024	0.0837(4)	0.6363(4)	0.2048(4)	0.0707	0.0331	0.2070	VV /	023	1.913(5)
025	0.2785(4)	0.5821(4)	0.0871(4)	0.2766	0.5604	0.0690	VV /	025	1.895(5)
026	0.4596(4)	0.6516(4)	-0.0258(4)	0.4656	0.6469	-0.0294	VV /	026	1.916(5)
027	0.5732(4)	0.6555(4)	0.1671(4)	0.5739	0.0579	0.1642	VV /	038	1.705(5)
028	0.5252(4)	0.7825(4)	0.2726(4)	0.5233	0.7875	0.2696	844	03	2.363(5)
029	0.5827(4)	0.2848(4)	0.3024(4)	0.5814	0.2823	0.3061	W8	018	1.911(5)
030	0.6959(5)	0.5689(4)	0.3236(4)	0.6961	0.5724	0.3234	W8	020	1.908(5)
031	0.2776(5)	0.6792(4)	0.5780(4)	0.2692	0.6859	0.5827	8	021	1.924(5)
032	0.3982(5)	1.0088(5)	0.2446(4)	0.3955	0.0173	0.2366	W8	022	1.917(5)
033	0.0206(5)	1.1344(4)	0.1442(4)	0.0137	0.1425	0.1295	W8	040	1.701(5)
034	-0.0885(5)	0.7922(4)	0.4772(4)	0.8962	0.7979	0.4803	W9	04	2.353(5)
035	-0.1012(5)	0.8222(4)	0.1091(4)	0.8943	0.8188	0.1079	W9	015	1.924(5)
036	0.1726(4)	0.3959(4)	0.5530(4)	0.1679	0.3947	0.5652	W9	017	1.895(5)
037	0.1648(5)	0.4243(4)	0.1848(4)	0.1633	0.4189	0.1893	W9	023	1.884(5)
038	0.2671(5)	0.7237(4)	-0.1137(4)	0.2683	0.7162	0.8845	W9	024	1.944(5)
039	0.6880(4)	0.5862(4)	0.0060(4)	0.6996	0.5764	0.0061	W9	O35	1.703(5)
040	0.3858(5)	1.0355(4)	-0.0839(4)	0.3860	0.0398	-0.0933	W10	04	2.319(5)
041	0.5827(5)	0.1027(5)	0.5089(4)	0.5819	0.0985	0.5087	W10	010	1.879(5)
042	0.7985(5)	0.0809(5)	0.3758(5)	0.7925	0.0897	0.3672	W10	014	1.907(5)
043	0.7142(5)	0.0288(4)	0.2658(4)	0.7209	0.0141	0.2677	W10	015	1.910(5)
044	0.4924(5)	0.0852(4)	0.3779(4)	0.4924	0.0773	0.3786	W10	016	1.956(5)
045	0.6762(5)	-0.1289(5)	0.4802(4)	0.6664	0.8583	0.4888	W10	O34	1.710(5)
046	-0.2062(4)	1.3526(5)	0.2141(4)	0.7859	0.3602	0.2185	W11	02	2.329(5)
047	-0.0866(5)	1.4006(4)	0.0237(4)	-0.0905	0.3961	0.0237	W11	013	1.949(5)
O48	0.1249(5)	1.3041(5)	0.1044(4)	0.1234	0.2935	0.1166	W11	019	1.907(5)
049	-0.0076(5)	1.2688(5)	0.2901(4)	-0.0160	0.2511	0.3012	W11	O20	1.886(5)
O50	-0.0711(5)	1.5274(5)	0.1354(4)	-0.0742	0.5231	0.1348	W11	O28	1.926(5)
O51W	0.4162(6)	0.2024(5)	0.2092(4)	0.4040	0.2053	0.2176	W11	O32	1.696(5)
O52W	0.7682(5)	0.7492(5)	0.0553(4)	0.7771	0.7450	0.0530	W12	04	2.383(5)
O53W	0.6891(5)	0.8293(5)	0.3167(4)	0.6802	0.8211	0.3269	W12	O16	1.923(5)
O54W	0.1161(6)	0.9876(6)	0.4590(6)	0.1153	1.0014	0.4765	W12	017	1.924(5)
O55W	0.2049(6)	1.1638(6)	0.3403(5)	0.2022	0.1647	0.3383	W12	018	1.901(5)
O56W	0.0641(5)	0.5497(5)	0.6624(4)	0.0690	0.5690	0.6673	W12	O19	1.913(5)
H1				0.6266	0.1175	0.5381	W12	O33	1.704(5)
H2				0.8593	0.0429	0.3281	Cu1	O29	2.413(5)
H3				0.7047	0.0651	0.1967	Cu1	O41	1.996(6)
H4				0.7540	0.8262	0.4895	Cu1	O42	1.949(5)
H5				-0.0999	0.3303	0.0209	Cu1	O43	1.978(6)
H6				0.1555	0.3402	0.1277	Cu1	O44	1.962(5)
H7				0.0732	0.2161	0.3003	Cu1	O45	2.524(5)
H8				-0.0099	0.5489	0.0809	Cu2	O33	2.596(5)

H9	0.4017	0.2843	0.2041	Cu2	O46	1.956(5)
H10	0.4297	0.1894	0.1540	Cu2	O47	1.972(5)
H11	0.6903	0.7853	0.0673	Cu2	O48	1.960(6)
H12	0.8159	0.7825	0.0700	Cu2	O49	1.950(6)
H13	0.6229	0.8142	0.3000	Cu2	O50	2.473(6)
H14	0.7495	0.7472	0.3390	Si1	01	1.632(5)
H15	0.1574	0.0509	0.4159	Si1	02	1.637(5)
H16	0.0904	-0.0416	0.4552	Si1	O3	1.625(5)
H17	0.1762	0.2075	0.3842	Si1	04	1.619(5)
H18	0.2746	0.1797	0.2879			
H19	0.0599	0.5235	0.7430			
H20	0.1543	0.5290	0.6445			
H21	0.1485	0.4074	0.8800			
H22	0.1712	0.5394	-0.0202			
H23	0.8350	0.7217	-0.0510			
H24	0.2445	0.6794	0.8039			
H25	0.2307	0.6693	0.7051			
H26	0.0441	0.6796	0.6745			
H27	0.6530	0.8336	0.4416			
H28	0.7062	-0.0595	0.2849			
H29	0.8235	0.0599	0.4339			
H30	0.5527	0.0335	0.5629			
H31	0.4263	0.1168	0.4283			
H32	0.4667	0.1235	0.3080			

Table S8: Experimental values of selected bond angles at the Cu (Cu1 and Cu2), Si, W and O sites for the triclinic $[Cu_2(H_2O)_{10}SiW_{12}O_{40}] \cdot 6H_2O$ structure (2*t*). CCDC number: 1420706.

Bond angles at the W site			e W site	Bond angles at the O site				Bond angles at the Cu site			
Α	В	С	A-B-C	Α	В	C	A-B-C	Α	В	С	A-B-C
			[deg]				[deg]				[deg]
O5	W1	01	84.91(19)	W3	02	W4	90.96(17)	O41	Cu1	O29	86.6(2)
O5	W1	08	158.6(2)	W11	02	W3	92.87(18)	O41	Cu1	O45	86.1(2)
O6	W1	01	72.34(19)	W11	02	W4	91.70(17)	O42	Cu1	O29	87.9(2)
O6	W1	O5	88.4(2)	Si1	02	W3	123.8(3)	O42	Cu1	O41	92.6(2)
O6	W1	08	87.6(2)	Si1	02	W4	124.5(3)	O42	Cu1	O43	88.9(3)
07	W1	01	84.36(19)	Si1	02	W11	123.6(3)	O42	Cu1	O44	177.0(2)
07	W1	O5	85.5(2)	W5	O3	W8	91.76(16)	O42	Cu1	O45	100.0(2)
07	W1	O6	156.3(2)	W7	O3	W5	91.34(17)	O43	Cu1	O29	103.0(2)
07	W1	08	89.8(2)	W7	O3	W8	91.28(16)	O43	Cu1	O41	170.3(2)
O8	W1	01	73.89(19)	Si1	O3	W5	124.1(3)	O43	Cu1	O45	84.3(2)
O29	W1	01	169.3(2)	Si1	O3	W7	124.8(3)	O44	Cu1	O29	89.50(19)
O29	W1	O5	102.2(2)	Si1	O3	W8	123.8(3)	O44	Cu1	O41	88.8(2)
O29	W1	O6	99.6(2)	W9	04	W12	89.86(16)	O44	Cu1	O43	90.3(2)
O29	W1	07	104.0(2)	W10	04	W9	91.71(17)	O44	Cu1	O45	82.71(19)
O29	W1	08	99.2(2)	W10	04	W12	92.00(17)	O46	Cu2	O33	98.6(2)
O8	W2	01	74.11(18)	Si1	04	W9	124.7(3)	O46	Cu2	O47	89.0(2)
O8	W2	O9	89.4(2)	Si1	04	W10	124.2(3)	O46	Cu2	O48	177.0(2)
O8	W2	O10	157.0(2)	Si1	04	W12	124.4(3)	O46	Cu2	O50	91.6(2)
O8	W2	011	89.8(2)	W5	O5	W1	150.9(3)	O47	Cu2	O33	87.15(19)
O9	W2	01	73.80(18)	W1	O6	W6	122.7(3)	O47	Cu2	O50	86.51(19)
O9	W2	O10	88.4(2)	W1	07	W4	153.2(3)	O48	Cu2	O33	80.0(2)
O9	W2	011	156.6(2)	W2	O8	W1	121.6(2)	O48	Cu2	O47	93.6(2)
O10	W2	01	83.31(19)	W2	O9	W6	120.9(2)	O48	Cu2	O50	90.2(2)

O10	W2	011	83.3(2)	W10	O10	W2	153.0(3)	O49	Cu2	O33	94.6(2)
011	W2	01	83.54(19)	W3	011	W2	154.3(3)	O49	Cu2	O46	87.8(2)
O36	W2	01	172.5(2)	W3	012	W4	122.1(3)	O49	Cu2	O47	176.5(2)
O36	W2	08	101.0(2)	W3	O13	W11	121.0(3)	O49	Cu2	O48	89.6(2)
O36	W2	O9	100.7(2)	W10	O14	W3	149.8(3)	O49	Cu2	O50	92.3(2)
O36	W2	O10	101.9(2)	W10	O15	W9	122.0(2)	O50	Cu2	O33	167.92(18)
O36	W2	011	102.3(2)	W12	O16	W10	121.4(3)				
011	W3	02	85.0(2)	W9	017	W12	122.3(3)				
011	W3	012	90.7(2)	W12	O18	W8	153.5(3)				
011	W3	013	157.6(2)	W11	O19	W12	150.1(3)				
011	W3	014	86.0(2)	W11	O20	W8	151.7(3)				
012	W3	02	73.6(2)	W8	O21	W5	122.1(3)				
012	W3	013	87.0(2)	W8	O22	W7	121.0(2)				
012	W3	014	156.6(2)	W9	O23	W7	153.8(3)				
013	W3	02	72.97(19)	W6	O24	W9	151.9(3)	Bo	ond angl	es at the	e Si site
014	W3	02	83.0(2)	W7	O25	W6	149.8(3)	Α	В	С	A-B-C
								<u> </u>			[deg]
014	W3	013	87.3(2)	W7	026	W5	121.6(3)	01	Si1	02	109.4(3)
031	W3	02	170.4(2)	W5	027	W4	151.8(3)	03	Si1	01	109.1(3)
031	W3	011	103.9(2)	W4	028	W11	121.3(3)	03	Si1	02	109.7(3)
031	W3	012	102.6(2)	W1	029	Cu1	148.7(3)	04	Si1	01	109.3(3)
031	W3	013	98.3(2)	W12	033	Cu2	156.4(3)	04	Si1	02	109.4(3)
031	W3	014	100.7(2)	W3	02	W4	90.96(17)	04	Si1	03	109.9(3)
07	W4	02	84.11(19)	W11	02	W3	92.87(18)				
07	W4	012	89.3(2)	W11	02	W4	91.70(17)				
07	W4	027	85.3(2)	Si1	02	W3	123.8(3)				
07	W4	028	157.2(2)	Si1	02	W4	124.5(3)				
012	W4	02	73.38(19)	Si1	02	W11	123.6(3)				
012	W4	027	156.3(2)	W5	03	W8	91.76(16)				
012	W4	028	87.8(2)	W7	03	W5	91.34(17)				
027	VV4	02	83.1(2)	W7	03	877	91.28(16)				
027	W4	028	88.3(2)	Si1	03	W5	124.1(3)				
028	W4	02	73.38(19)	Si1	03	W7	124.8(3)				
O30	W4	02	171.0(2)	Si1	03	W8	123.8(3)				
030	W4	07	103.9(2)	W9	04	W12	89.86(16)				
030	W4	012	102.3(2)	W10	04	W9	91.71(17)				
030	W4	027	101.4(2)	W10	04	W12	92.00(17)				
O30	W4	O28	98.8(2)	Si1	04	W9	124.7(3)				
05	W5	03	85.04(19)	Si1	04	W10	124.2(3)				
05	W5	021	157.9(2)	Si1	04	W12	124.4(3)				
05	W5	O26	90.0(2)	W5	05	W1	150.9(3)				
021	W5	O3	73.06(19)	W1	06	W6	122.7(3)				
O26	W5	O3	73.26(19)	W1	07	W4	153.2(3)				
O26	W5	021	86.5(2)	W2	08	W1	121.6(2)				
027	W5	O3	83.53(19)	W2	09	W6	120.9(2)				
027	W5	O5	86.8(2)	W10	O10	W2	153.0(3)				
027	W5	O21	87.9(2)	W3	011	W2	154.3(3)				
027	W5	O26	156.8(2)	W3	012	W4	122.1(3)				
O39	W5	O3	171.6(2)	W3	013	W11	121.0(3)				

O39	W5	O5	101.8(2)	W10	014	W3	149.8(3)		
O39	W5	O21	100.2(2)	W10	O15	W9	122.0(2)		
O39	W5	O26	101.7(2)	W12	O16	W10	121.4(3)		
O39	W5	027	101.5(2)	W9	017	W12	122.3(3)		
O6	W6	01	72.37(19)	W12	O18	W8	153.5(3)		
O9	W6	01	74.14(19)	W11	O19	W12	150.1(3)		
O9	W6	O6	87.2(2)	W11	O20	W8	151.7(3)		
O24	W6	01	85.48(19)	W8	O21	W5	122.1(3)		
O24	W6	O6	157.5(2)	W8	O22	W7	121.0(2)		
O24	W6	09	90.4(2)	W9	O23	W7	153.8(3)		
024	W6	O25	86.9(2)	W6	O24	W9	151.9(3)		
O25	W6	01	85.26(19)	W7	O25	W6	149.8(3)		
O25	W6	O6	87.5(2)	W7	O26	W5	121.6(3)		
O25	W6	09	159.4(2)	W5	027	W4	151.8(3)		
O37	W6	01	169.7(2)	W4	O28	W11	121.3(3)		
O37	W6	O6	99.2(2)	W1	O29	Cu1	148.7(3)		
O37	W6	O9	100.0(2)	W12	O33	Cu2	156.4(3)		
O37	W6	O24	103.3(2)						
O37	W6	O25	100.5(2)						
022	W7	O3	74.10(18)						
O23	W7	O3	84.10(19)						
O23	W7	022	88.6(2)						
O23	W7	O26	157.8(2)						
O25	W7	O3	84.93(19)						
O25	W7	022	158.8(2)						
O25	W7	O23	85.8(2)						
O25	W7	O26	89.9(2)						
O26	W7	O3	73.82(19)						
O26	W7	022	87.5(2)						
O38	W7	O3	170.1(2)						
O38	W7	022	98.1(2)						
O38	W7	O23	102.1(2)						
O38	W7	O25	103.1(2)						
O38	W7	O26	100.1(2)						
O18	W8	O3	84.59(19)						
O18	W8	O21	157.2(2)						
O18	W8	022	90.3(2)						
O20	W8	O3	84.06(18)						
O20	W8	018	84.8(2)						
O20	W8	O21	88.3(2)						
O20	W8	022	157.5(2)						
O21	W8	O3	73.06(18)						
022	W8	O3	73.58(18)						
022	W8	O21	87.8(2)						
O40	W8	O3	171.0(2)						
O40	W8	018	101.7(2)						
O40	W8	O20	102.8(2)						
O40	W8	O21	101.0(2)						
O40	W8	022	99.7(2)						

O15	W9	04	72.60(19)				
O15	W9	024	86.9(2)				
017	W9	04	74.54(19)				
017	W9	015	88.4(2)				
017	W9	O24	157.5(2)				
O23	W9	04	84.5(2)				
O23	W9	015	156.2(2)				
O23	W9	017	91.9(2)				
O23	W9	O24	83.9(2)				
O24	W9	04	83.03(18)				
O35	W9	04	171.6(2)				
O35	W9	015	100.2(2)				
O35	W9	017	101.3(2)				
O35	W9	023	103.1(2)				
O35	W9	024	101.2(2)				
O10	W10	04	85.7(2)				
O10	W10	014	86.8(2)				
O10	W10	015	90.7(2)				
O10	W10	016	159.2(2)				
014	W10	04	83.6(2)				
014	W10	015	157.2(2)				
014	W10	016	87.2(2)				
O15	W10	04	73.64(19)				
O15	W10	016	87.2(2)				
O16	W10	04	73.78(19)				
O34	W10	04	171.1(2)				
O34	W10	010	101.8(2)				
O34	W10	014	101.3(2)				
O34	W10	015	101.3(2)				
034	W10	016	98.9(2)				
013	W11	02	73.13(19)				
019	W11	02	85.22(19)				
019	W11	013	88.2(2)				
019	W11	028	158.8(2)				
020	W11	02	85.30(19)				
020	W11	013	158.3(2)				
020	W11	019	87.3(2)				
020	W11	028	90.2(2)				
028	W11	02	73.60(19)				
028	W11	013	86.4(2)				
032	W11	02	168.3(2)				
032	W11	013	98.0(2)				
032	W11	019	102.5(2)				
032	W11	020	103.7(2)				
032	W11	028	98.6(2)				
016	W12	04	72.83(19)				
016	W12	017	87.3(2)				
017	W12	04	73.32(18)				
018	W12	04	83.60(19)				

O18	W12	016	156.2(2)				
O18	W12	017	89.2(2)				
O18	W12	019	85.7(2)				
O19	W12	04	83.56(19)				
O19	W12	016	88.3(2)				
O19	W12	017	156.7(2)				
O33	W12	04	170.6(2)				
O33	W12	016	99.4(2)				
O33	W12	017	101.5(2)				
O33	W12	018	104.3(2)				
O33	W12	019	101.8(2)				

Figure S3: FTIR spectrum of $[Cu_2(H_2O)_{10}SiW_{12}O_{40}] \cdot 6H_2O$ and $[Cu_{1.5}(H_2O)_{7.5}PW_{12}O_{40}] \cdot 4.75H_2O$ compounds showing the characteristic absorption bands for the C=O (3700 - 2700 cm⁻¹), Si-O (1000 - 900 cm⁻¹), W-O (962 cm⁻¹), P-O(1050 - 870 cm⁻¹) and Cu-O (1600 cm⁻¹) for respective compounds.

Figure S4: ³¹P NMR of the compound $[Cu_{1.5}(H_2O)_{7.5}PW_{12}O_{40}] \cdot 4.75H_2O$ in D₂O shows two signals(-12.83 and -15.0 ppm) indicating the formation of a second species in solution. This second species is the lacunary $[PW_{11}O_{39}]^{7-}$ formed due to the loss of $[WO]^{4+[1]}$

Figure S5: ³¹P NMR of the compound [Cu_{1.5}(H₂O)_{7.5}PW₁₂O₄₀]·4.75H₂O in acetonitrile does not show any formation of a second species in solution. The shift of 0.12 ppm clearly indicates the presence of copper in the sample.^[2]

The TGA was performed in N₂ flow with a heating rate of 5 $^\circ$ C/min.

Figure S6-(a): Thermogravimetric analysis of [Cu_{1.5}(H₂O)_{7.5}PW₁₂O₄₀]·4.75H₂O.

Figure S6-(b): Thermogravimetric analysis of [Cu₂(H₂O)₁₀SiW₁₂O₄₀]·6H₂O.

Table S9: The weight loss due to the loss of water molecules for **compounds 1 and 2** are summarized in the table below. The values correspond to the TGA peaks obtained for the two compounds.

Compound	Water of hydration	First derivative peak temperature (T _{P1} °C)	Number of water molecules lost at T _{P1}	Second derivative peak temperature (T _{P2} °C)	Number of water molecules lost at T _{P2}	Third derivative peak temperature (T _{P3} °C)	Number of water molecules lost at T _{P3}
[Cu _{1.5} (H ₂ O) _{7.5} PW ₁₂ O ₄₀]·4.75H ₂ O	12.25	76.9	4.25	156	3.63	400	3.87
[Cu₂(H₂O)10SiW12O40]·6H2O	16	74.4	6	146	6	389	4

PXRD experimental details: The measurements were performed using Bruker D8 Advance theta/theta diffractometer in Bragg-Brentano geometry with CuK α radiation (step size 0.02°, time per step = 5 sec). The data analysis was performed using Igor Pro(version 6.37) and Rietveld analysis on the [Cu₂(H₂O)₁₀SiW₁₂O₄₀]·6H₂O pattern was performed using EXPO2014.^[3,4]

Figure S7: Rietveld refinement of $[Cu_2(H_2O)_{10}SiW_{12}O_{40}] \cdot 6H_2O$ (**2***c*) showing the observed, calculated and background plots. The final Rietveld plot corresponds to satisfactory monoclinic crystal structure model with profile factors $R_P = 5.8\%$, $R_{WP} = 8.27\%$ and $R_F = 1.778$. The triclinic phase **2***t* is only present as a very minor phase in the bulk material. The PXRD pattern basically indicates the sole presence of the thermodynamically more stable phase **2***c*.

Table S10: A comparison of the unit cell parameters of compound **2***c* as determined by single crystal and powder X-ray diffraction is listed in the table below.

	H ₃₂ Cu ₂ O ₅₆ SiW ₁₂ monoclinic (<i>P</i> 2 ₁ /n)							
	Single crystal diffraction	Powder diffraction						
<i>a,</i> Å	12.9789(6)	12.9866(8)						
<i>b,</i> Å	22.2778(10)	22.2685(5)						
<i>c,</i> Å	15.4690(5)	15.4470(2)						
a, deg	90	90						
β, deg	94.527(4)	94.5205(4)						
γ, deg	90	90						
<i>V</i> , Å ³	4458.8(3)	4453.29(2)						

Figure S8: PXRD pattern of $[Cu_{1.5}(H_2O)_{7.5}PW_{12}O_{40}] \cdot 4.75H_2O$ compared with simulated pattern of the same obtained from single crystal X-ray diffraction data.

Figure S9: PXRD pattern of $[Cu_2(H_2O)_6SiW_{12}O_{40}] \cdot 10H_2O$ compared with simulated pattern of the same for the monoclinic (**2***t*) and triclinic (**2***t*) structures obtained from single crystal X-ray diffraction data.

References:

[1] S. R Bajpe, E. Breynaert, K. Robeyns, K. Houthoofd, G. Absillis, D. Mustafa, T. N P-Vogt, A. Maes, J. A. Martens, and C. E. A. Kirschhock, *Eur. J. Inorg. Chem*, **2012**, 24, 3852-3858.

- [2] S. R. Bajpe, C E A Kirschhock, A Aerts, E Breynaert, G Absillis, T N P-Vogt, L Giebeler, and J A Martens, *Chem. A-Eur. J*, **2010**, 16(13), 3926-3932.
- [3] A. Altomare, M Camalli, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, J Appl Cryst 2009, 42, 1197-1202.
- [4] A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J Appl Cryst 2013, 46, 1231-1235.