Coordination polymers of 5-susbstituted isophthalic acid

Laura J. McCormick,^{a*} Samuel A. Morris,^a Alexandra M. Z. Slawin,^a Simon J. Teat^b and Russell E. Morris^a

^{*a*} EaSTCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, KY16 9ST, UK. E-mail: ljm22@standrews.ac.uk; Fax: +44 (0)1334 463808; Tel: +44 (0)1334 463776

^b Advanced Light Source, Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

S1 Powder diffraction patterns

S2 Thermogravimetric studies

S3 Details of Nitric Oxide release experiments

S4 Comparison of powder diffraction patterns before and after NO-loading and release

S5 Selected bond lengths and distances for Compounds 1 to 5

Figure S1.1: Calculated and experimental powder diffraction patterns for Ni₂(mip)₂(H₂O)₈·2H₂O (1).

Figure S1.2: Calculated and experimental powder diffraction patterns for Zn₆(mip)₅(OH)₂(H₂O)₄·6.1H₂O (2).

S1 Powder Diffraction Patterns

Figure S1.3: Calculated and experimental powder diffraction patterns for Zn₆(mip)₅(OH)₂(H₂O)₂·4H₂O (3).

Figure S1.4: Calculated and experimental powder diffraction patterns for Mn(HMeOip)₂ (4).

Figure S1.5: Calculated and experimental powder diffraction patterns for Mn₃(tbip)₂(Htbip)₂(EtOH)₂ (5).

S2 Thermogravimetric experiments

Figure S2.1: Thermogravimetric analysis of Compound **1**. Overall mass loss (23.15%) corresponds to the loss of 10.93 water molecules, of which 1.65 water molecules are lost in the first step (25 to 110°C, 3.49%, non-coordinated water molecules) and 9.28 are lost in the second step (110 to 225°C, 19.65%, coordinated water molecules).

Figure S2.2: Thermogravimetric analysis of Compound **2**. Initial mass loss occurring between 20 and 175°C corresponds to the loss of approximately 11 water molecules (13.07%).

Figure S2.3: Thermogravimetric analysis of Compound **3**. The mass loss occurring over the temperature range 20°C to 200°C approximately corresponds to the loss of 6 water molecules (7.58%).

Figure S2.4: Thermogravimetric analysis of Compound 4. The compound is stable up to approximately 300°C, at which point a mass loss occurs corresponding to more than the loss of both carboxylate groups (35.34%).

Figure S2.5: Thermogravimetric analysis of Compound **5**. The mass loss occurring over the 150° to 250°C temperature range approximately corresponds to the loss of the coordinated ethanol molecule (10.35%).

S3 Details of Nitric Oxide release experiments

S3.1 Plots of Nitric Oxide release experiments on Compound 2

Run 1

Run 2

Run 3

Run 4

Total NO Released

Run 5

Total NO Released

Run 6

Run 7

Total NO Released

Run 8

Release Profile

Run 1

Run 2

Run 3

Run 4

Release Profile

Run 5

Release Profile

Run 6

S4 Comparison of powder diffraction patterns before and after NO-loading and release

Figure S4.1: Comparison of PXRD patterns of Compound 2 as synthesised (blue) and after (red) dehydration and NO-loading and release experiments. The intensities of the as synthesised powder have been scaled down to 0.3 times their original intensity to for a clear comparison of the patterns.

Figure S4.2: Comparison of PXRD patterns of Compound 3 as synthesised (blue) and after (red) dehydration and NO-loading and release experiments. The after NO release trace has been multiplied by a factor of 2.

S5 Selected bond lengths and distances for Compounds $1\ {\rm to}\ 5$

S5.1 Bond length tables for Compound 1

			0						
Table 1. 0	lalastad band	lam atlan [X T	and analas	гот	fam	C	and a	1
I ADIE I S	velecied bond	iengins i	AL	and angles	- T	I IOF	Comn	ma	
		Tonguis I.	4 x	und ungios		101	Comp	ound	1.

O(1)-Ni(1)	2.043(2)	O(1)-Ni(1)-O(2W)	88.35(11)
O(1W)-Ni(1)	2.078(2)	O(3W)-Ni(1)-O(2W)	94.70(14)
O(3)-Ni(1) ^I	2.031(2)	O(4W)-Ni(1)-O(2W)	173.30(12)
O(2W)-Ni(1)	2.076(3)	O(3) ^{III} -Ni(1)-O(1W)	93.41(10)
O(3W)-Ni(1)	2.047(3)	O(1)-Ni(1)-O(1W)	88.84(10)
O(4W)-Ni(1)	2.051(3)	O(3W)-Ni(1)-O(1W)	177.45(13)
O(6)-Ni(2)	2.019(2)	O(4W)-Ni(1)-O(1W)	86.18(11)
O(5W)-Ni(2)	2.046(3)	O(2W)-Ni(1)-O(1W)	87.61(12)
O(6W)-Ni(2)	2.087(2)	O(6)-Ni(2)-O(8) ^{IV}	174.84(14)
O(8)-Ni(2) ^{II}	2.021(2)	O(6)-Ni(2)-O(5W)	93.12(12)
O(7W)-Ni(2)	2.117(3)	O(8) ^{IV} -Ni(2)-O(5W)	91.97(11)
O(8W)-Ni(2)	2.077(3)	O(6)-Ni(2)-O(8W)	88.57(10)
Ni(1)-O(3) ^{III}	2.031(2)	O(8) ^{IV} -Ni(2)-O(8W)	90.50(10)
Ni(2)-O(8) ^{IV}	2.021(2)	O(5W)-Ni(2)-O(8W)	91.62(12)
		O(6)-Ni(2)-O(6W)	92.80(10)
C(10)-O(6)-Ni(2)	126.6(2)	O(8) ^{IV} -Ni(2)-O(6W)	88.14(10)
C(14)-O(8)-Ni(2) ^{II}	132.3(2)	O(5W)-Ni(2)-O(6W)	88.34(11)
O(3) ^{III} -Ni(1)-O(1)	174.04(12)	O(8W)-Ni(2)-O(6W)	178.64(10)
O(3) ^{III} -Ni(1)-O(3W)	87.82(11)	O(6)-Ni(2)-O(7W)	86.17(12)
O(1)-Ni(1)-O(3W)	90.15(11)	O(8) ^{IV} -Ni(2)-O(7W)	88.76(12)
O(3) ^{III} -Ni(1)-O(4W)	96.64(12)	O(5W)-Ni(2)-O(7W)	178.26(11)
O(1)-Ni(1)-O(4W)	89.01(11)	O(8W)-Ni(2)-O(7W)	89.95(12)
O(3W)-Ni(1)-O(4W)	91.46(14)	O(6W)-Ni(2)-O(7W)	90.11(11)
O(3) ^{III} -Ni(1)-O(2W)	86.23(12)		

Symmetry transformations used to generate equivalent atoms: I: x+1/2, -y+1/2, z II: x-1/2, -y+3/2, z III: x-1/2, -y+1/2, z IV: x+1/2, -y+3/2, z

 Table 2: Hydrogen bonds for Compound 1 [Å and °].

D-H···A	d(D-H)	d(H···A)	$d(D \cdots A)$	<(DHA)
O(3W)-H(3A)····O(9W)	0.888(14)	1.959(18)	2.829(5)	166(4)
O(3W)-H(3B)····O(2)	0.889(14)	1.94(3)	2.662(4)	138(3)
O(4W)-H(4B)····O(7)	0.898(14)	1.840(17)	2.727(4)	169(4)
O(5W)-H(5A)····O(4)	0.896(14)	1.93(2)	2.780(4)	157(4)
O(6W)-H(6A)····O(5)	0.884(14)	1.81(2)	2.647(4)	156(4)
O(1W)- $H(1B)$ ···· $O(4)$ ^{III}	0.905(13)	1.800(17)	2.679(4)	164(4)
O(4W)- $H(4A)$ ···· $O(5)$ ^{III}	0.893(14)	2.02(3)	2.784(4)	143(4)
$O(1W)$ - $H(1A)$ ···· $O(8)^V$	0.881(14)	1.921(15)	2.793(4)	170(4)
$O(2W)$ - $H(2A)$ ···· $O(6)^V$	0.899(14)	1.96(2)	2.830(4)	162(4)
$O(2W)$ - $H(2B)$ ···· $O(8W)^V$	0.894(14)	2.19(3)	2.819(4)	127(3)
O(5W)-H(5B)O(2) ^{IV}	0.894(14)	1.874(16)	2.744(4)	164(4)
O(8W)-H(8A)O(7) ^{IV}	0.886(14)	1.88(3)	2.653(4)	145(4)
O(7W)-H(7A)····O(3) ^{VI}	0.908(14)	2.09(2)	2.942(4)	156(4)
O(7W)-H(7B)O(1W) ^{VI}	0.887(14)	2.28(3)	3.002(4)	139(4)
O(10W)-H(10B) ····O(6W)	0.916(14)	2.24(4)	2.890(5)	128(4)

Symmetry transformations used to generate equivalent atoms:

I: x+1/2, -y+1/2, z **II:** x-1/2, -y+3/2, z **III:** x-1/2, -y+1/2, z

IV: x+1/2, -y+3/2, z **V:** -x+1/2, y-1/2, z-1/2 **VI:** -x+1, -y+1, z+1/2

O(1)-Zn(1)	2.016(4)	Zn(4)-O(2H)-Zn(5) ^{II}	119.0(2)
O(1H)-Zn(3)	1.985(4)	Zn(4)-O(2H)-Zn(6) ^{II}	113.3(2)
$O(1H)$ - $Zn(2)^{I}$	2.089(5)	$Zn(5)^{II}$ -O(2H)- $Zn(6)^{II}$	102.4(2)
$O(1H)$ - $Zn(1)^{I}$	2.115(5)	$Zn(1)^{I}-O(3)-Zn(6)^{III}$	103.22(17)
O(2A)-Zn(2)	1.973(10)	$Zn(6)^{II}-O(13)-Zn(1)^{V}$	101.62(17)
O(2B)-Zn(2)	1.952(10)	O(1)-Zn(1)-O(8) ^{VII}	105.8(2)
O(1W)-Zn(2)	2.189(6)	O(1)-Zn(1)-O(11) ^{VIII}	89.81(19)
O(2H)-Zn(4)	1.974(5)	$O(8)^{VII}$ -Zn(1)-O(11) ^{VIII}	92.3(2)
O(2H)-Zn(5) ^{II}	2.077(5)	O(1)-Zn(1)-O(1H) ^{IX}	96.15(19)
O(2H)-Zn(6) ^{II}	2.126(5)	$O(8)^{VII}$ -Zn(1)- $O(1H)^{IX}$	89.91(19)
O(3)-Zn(1) ^I	2.122(4)	$O(11)^{VIII}$ -Zn(1)- $O(1H)^{IX}$	172.80(18)
O(3)-Zn(6) ^{III}	2.168(4)	O(1)-Zn(1)-O(3) ^{IX}	163.20(19)
O(2WA)-Zn(2)	2.002(11)	$O(8)^{VII}$ -Zn(1)-O(3) ^{IX}	89.21(19)
O(2WB)-Zn(2)	2.082(19)	$O(11)^{VIII}$ -Zn(1)-O(3) ^{IX}	81.86(19)
O(4)-Zn(3)	1.960(6)	$O(1H)^{IX}$ -Zn(1)-O(3) ^{IX}	91.35(18)
O(3WA)-Zn(5)	2.286(11)	O(1)-Zn(1)-O(13) ^{VIII}	87.76(18)
O(3WB)-Zn(5)	2.07(3)	$O(8)^{VII}$ -Zn(1)-O(13) ^{VIII}	166.48(18)
O(5)-Zn(3)	1.953(5)	$O(11)^{VIII}$ -Zn(1)- $O(13)^{VIII}$	87.5(2)
O(4WA)-Zn(5)	1.871(13)	$O(1H)^{IX}$ -Zn(1)- $O(13)^{VIII}$	88.72(18)
O(4WB)-Zn(5)	2.10(3)	$O(3)^{IX}$ -Zn(1)-O(13) ^{VIII}	77.38(16)
O(5W)-Zn(5)	2.28(3)	O(2B)-Zn(2)-O(7)#7	132.6(8)
O(7)-Zn(2) ^{IV}	1.953(5)	$O(7)^{VII}$ -Zn(2)- $O(2A)$	121.8(7)
O(8)-Zn(1) ^{IV}	2.025(5)	O(2B)-Zn(2)-O(2WA)	120.6(8)
O(9)-Zn(6) ^{III}	2.086(5)	$O(7)^{VII}$ -Zn(2)- $O(2WA)$	106.0(5)
O(10)-Zn(3)	1.957(5)	O(2A)-Zn(2)-O(2WA)	130.0(7)
$O(11)$ -Zn $(1)^{V}$	2.074(5)	O(2B)-Zn(2)-O(2WB)	98.4(10)
O(12)-Zn(4)	1.956(5)	$O(7)^{VII}$ -Zn(2)- $O(2WB)$	128.7(7)
O(13)-Zn(6) ^{II}	2.137(4)	O(2A)-Zn(2)-O(2WB)	108.6(9)
O(13)-Zn(1) ^V	2.201(4)	O(2B)-Zn(2)-O(1H) ^{IX}	92.9(5)
O(14)-Zn(4)	1.954(6)	$O(7)^{VII}$ -Zn(2)- $O(1H)^{IX}$	92.4(2)
O(15)-Zn(6) ^{VI}	2.037(5)	O(2A)-Zn(2)-O(1H) ^{IX}	97.9(4)
O(16A)-Zn(5) ^{VI}	1.968(8)	O(2WA)- $Zn(2)$ - $O(1H)$ ^{IX}	93.7(4)
O(16B)-Zn(5) ^{VI}	1.945(16)	O(2WB)-Zn(2)-O(1H) ^{IX}	89.6(5)
O(17)-Zn(4)	1.960(5)	O(2B)-Zn(2)-O(1W)	87.8(5)
O(19)-Zn(5)	1.969(6)	$O(7)^{VII}$ -Zn(2)-O(1W)	86.3(2)
O(20)-Zn(6)	2.006(5)	O(2A)-Zn(2)-O(1W)	82.6(4)
		O(2WA)-Zn(2)-O(1W)	87.0(4)
$Zn(3)-O(1H)-Zn(2)^{I}$	118.4(2)	O(2WB)-Zn(2)-O(1W)	91.4(5)
$Zn(3)-O(1H)-Zn(1)^{I}$	113.7(2)	O(1H) ^{IX} -Zn(2)-O(1W)	178.7(2)
$Zn(2)^{I}$ -O(1H)- $Zn(1)^{I}$	103.26(19)	O(5)-Zn(3)-O(10)	106.9(2)

O(5)-Zn(3)-O(4)	110.2(2)	$O(16B)^{X}$ -Zn(5)-O(5W)	82.5(9)
O(10)-Zn(3)-O(4)	110.0(2)	O(19)-Zn(5)-O(5W)	168.6(7)
O(5)-Zn(3)-O(1H)	108.2(2)	O(3WB)-Zn(5)-O(5W)	93.0(11)
O(10)-Zn(3)-O(1H)	113.1(2)	O(2H) ^{II} -Zn(5)-O(5W)	84.2(7)
O(4)-Zn(3)-O(1H)	108.5(2)	O(4WB)-Zn(5)-O(5W)	83.0(11)
O(14)-Zn(4)-O(12)	110.5(2)	O(4WA)-Zn(5)-O(3WA)	91.1(5)
O(14)-Zn(4)-O(17)	108.3(3)	O(16A) ^X -Zn(5)-O(3WA)	79.9(4)
O(12)-Zn(4)-O(17)	109.6(2)	O(19)-Zn(5)-O(3WA)	84.0(3)
O(14)-Zn(4)-O(2H)	108.8(2)	O(2H) ^{II} -Zn(5)-O(3WA)	173.0(3)
O(12)-Zn(4)-O(2H)	114.2(2)	$O(20)$ -Zn(6)- $O(15)^X$	104.7(2)
O(17)-Zn(4)-O(2H)	105.1(2)	$O(20)$ -Zn(6)- $O(9)^{XI}$	91.5(2)
$O(4WA)$ -Zn(5)- $O(16A)^{X}$	121.8(5)	$O(15)^{X}$ -Zn(6)-O(9) ^{XI}	90.1(2)
O(4WA)-Zn(5)-O(19)	109.2(5)	O(20)-Zn(6)-O(2H) ^{II}	91.04(19)
$O(16B)^{X}$ -Zn(5)-O(19)	108.5(6)	$O(15)^{X}$ -Zn(6)- $O(2H)^{II}$	95.5(2)
$O(16A)^{X}$ -Zn(5)-O(19)	126.4(3)	$O(9)^{XI}$ -Zn(6)-O(2H) ^{II}	173.06(18)
O(16B) ^X -Zn(5)-O(3WB)	82.8(11)	O(20)-Zn(6)-O(13) ^{II}	88.7(2)
O(19)-Zn(5)-O(3WB)	85.5(9)	$O(15)^{X}$ -Zn(6)-O(13) ^{II}	164.4(2)
O(4WA)-Zn(5)-O(2H) ^{II}	95.8(4)	$O(9)^{XI}$ -Zn(6)-O(13) ^{II}	81.64(19)
$O(16B)^{X}-Zn(5)-O(2H)^{II}$	109.0(5)	$O(2H)^{II}$ -Zn(6)-O(13) ^{II}	91.96(19)
$O(16A)^{X}$ -Zn(5)-O(2H) ^{II}	95.5(3)	$O(20)$ -Zn(6)- $O(3)^{XI}$	166.53(19)
O(19)-Zn(5)-O(2H) ^{II}	94.7(2)	$O(15)^{X}$ -Zn(6)-O(3) ^{XI}	88.56(18)
O(3WB)-Zn(5)-O(2H) ^{II}	167.3(10)	$O(9)^{XI}$ -Zn(6)-O(3) ^{XI}	86.21(19)
O(16B) ^X -Zn(5)-O(4WB)	122.3(10)	$O(2H)^{II}$ -Zn(6)-O(3) ^{XI}	89.82(18)
O(19)-Zn(5)-O(4WB)	88.3(8)	$O(13)^{II}$ -Zn(6)-O(3) ^{XI}	77.79(16)
O(2H) ^{II} -Zn(5)-O(4WB)	124.5(8)		

Symmetry transformations used to generate equivalent atoms: I: x, y, z-1 II: -x, -y+1, z III: -x+1/2, y-1/2, z-1/2 IV: -x+1, -y+1, z-1 V: x-1/2, -y+1/2, z-1/2 VI: -x, -y+1, z-1 VII: -x+1, -y+1, z+1 VIII: x+1/2, -y+1/2, z+1/2 IX: x, y, z+1 X: -x, -y+1, z+1 XI: -x+1/2, y+1/2, z+1/2

Table 4: Selected bond	lengths [.	Ål and	angles [°l for	Compound 3.
		I I J unu		1101	compound o .

O(1)-Zn(2)	2.021(8)	O(9)-Zn(1)-Zn(2)	150.3(2)
O(1H)-Zn(1)	1.990(7)	O(7)-Zn(1)-Zn(2)	88.4(2)
O(1H)-Zn(3)	2.023(7)	O(5)-Zn(1)-Zn(2)	84.3(2)
O(1H)-Zn(2)	2.087(7)	O(1)-Zn(2)-O(6)	163.9(3)
O(2)-Zn(3) ^{III}	1.941(8)	O(1)-Zn(2)-O(8)	95.0(3)
O(1W)-Zn(2)	2.259(8)	O(6)-Zn(2)-O(8)	100.3(3)
O(3)-Zn (3) ^{III}	2.113(7)	O(1)-Zn(2)-O(1H)	93.0(3)
O(4)-Zn(3) ^{III}	2.244(8)	O(6)-Zn(2)-O(1H)	91.8(3)
O(4)-Zn(2)	2.283(7)	O(8)-Zn(2)-O(1H)	89.9(3)
O(5)-Zn(1)	1.976(7)	O(1)-Zn(2)-O(1W)	85.1(3)
O(6)-Zn(2)	2.025(8)	O(6)-Zn(2)-O(1W)	79.0(3)
O(7)-Zn(1)	1.960(8)	O(8)-Zn(2)-O(1W)	171.9(3)
O(8)-Zn(2)	2.076(8)	O(1H)-Zn(2)-O(1W)	98.2(3)
O(9)-Zn(1)	1.952(8)	O(1)- $Zn(2)$ - $O(4)$	92.0(3)
O(10)-Zn(3)	2.021(8)	O(6)-Zn(2)-O(4)	84.3(3)
Zn(1)- $Zn(2)$	3.1449(17)	O(8)-Zn(2)-O(4)	86.2(3)
$Zn(3)-O(2)^{VI}$	1.941(8)	O(1H)-Zn(2)-O(4)	173.9(3)
Zn(3)-O(3) ^{VI}	2.113(7)	O(1W)-Zn(2)-O(4)	85.8(3)
$Zn(3)-O(4)^{VI}$	2.244(8)	$O(2)^{VI}$ -Zn(3)-O(10)	98.2(4)
		O(2) ^{VI} -Zn(3)-O(1H)	99.3(3)
Zn(1)-O(1H)-Zn(3)	106.3(3)	O(10)-Zn(3)-O(1H)	98.0(3)
Zn(1)-O(1H)-Zn(2)	100.9(3)	$O(2)^{VI}$ -Zn(3)-O(3) ^{VI}	156.3(3)
Zn(3)-O(1H)-Zn(2)	127.3(4)	O(10)-Zn(3)-O(3) ^{VI}	97.6(3)
$Zn(3)^{III}-O(4)-Zn(2)$	98.9(3)	O(1H)-Zn(3)-O(3) ^{VI}	95.8(3)
O(9)-Zn(1)-O(7)	117.6(3)	$O(2)^{VI}$ -Zn(3)-O(4) ^{VI}	98.2(3)
O(9)-Zn(1)-O(5)	102.7(4)	O(10)-Zn(3)-O(4) ^{VI}	150.5(3)
O(7)-Zn(1)-O(5)	101.9(4)	O(1H)-Zn(3)-O(4) ^{VI}	103.3(3)
O(9)-Zn(1)-O(1H)	111.9(3)	$O(3)^{VI}$ -Zn(3)-O(4) ^{VI}	60.4(3)
O(7)-Zn(1)-O(1H)	110.3(3)	$O(2)^{VI}$ -Zn(3)-C(13) ^{VI}	128.2(3)
O(5)-Zn(1)-O(1H)	111.7(3)		

Symmetry transformations used to generate equivalent atoms:

I: -x, -y+2, z II: -x+1, -y+2, z III: -x+1/2, y+1/2, -z IV: x, y+1, z V: x, y-1, z VI: -x+1/2, y-1/2, -z

Table 5: Hydrogen bonds for Compound 3 [Å and °].					
D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)	
O(1H)-H(1H)····O(3W)	1.00	1.88	2.858(13)	165.1	

Symmetry transformations used to generate equivalent atoms: I: -x, -y+2, z II: -x+1, -y+2, z III: -x+1/2, y+1/2, -z

IV: x, y+1, z **V:** x, y-1, z **VI:** -x+1/2, y-1/2, -z

S5.4 Bond length tables for Compound 4

Mn(1)-O(1) ^{III}	2.1451(15)	$O(4)^{IV}-Mn(1)-O(4)^{V}$	180.0	
Mn(1)-O(1)	2.1452(15)	$O(1)^{III}-Mn(1)-O(3)^{III}$	95.27(6)	
$Mn(1)-O(4)^{IV}$	2.1616(15)	$O(1)-Mn(1)-O(3)^{III}$	84.73(6)	
Mn(1)-O(3)	2.2201(15)	$O(4)^{IV}-Mn(1)-O(3)^{III}$	84.44(6)	
$O(4)-Mn(1)^{VI}$	2.1615(15)	$O(4)^{V}$ -Mn(1)-O(3) ^{III}	95.56(6)	
		$O(1)^{III}-Mn(1)-O(3)$	84.73(6)	
$O(1)^{III}$ -Mn(1)-O(1)	180.00(8)	O(1)-Mn(1)-O(3)	95.27(6)	
$O(1)^{III}$ -Mn(1)-O(4) ^{IV}	89.94(6)	$O(4)^{IV}-Mn(1)-O(3)$	95.56(6)	
O(1)-Mn(1)-O(4) ^{IV}	90.06(6)	$O(4)^{V}$ -Mn(1)-O(3)	84.44(6)	
$O(1)^{III}$ -Mn(1)-O(4) ^V	90.06(6)	$O(3)^{III}-Mn(1)-O(3)$	180.0	
$O(1)-Mn(1)-O(4)^{V}$	89.94(6)			

Symmetry	transformations	used to	generate	equivalent	atoms:
5 5			U	1	

I: -x+1, y+1/2, -z-1/2 II: -x+1, y-1/2, -z-1/2 III: -x, -y+1, -z IV: -x+1, -y+1, -z V: x-1, y, z VI: x+1, y, z

Table 7: Hydrogen bonds for Compound 4 [Å and °].

D-H···A	d(D-H)	d(H···A)	$d(D \cdots A)$	<(DHA)
O(2)-H(2)····O(3) ^{III}	0.84	1.82	2.647(2)	167.5

Symmetry transformations used to generate equivalent atoms: I: -x+1, y+1/2, -z-1/2 II: -x+1, y-1/2, -z-1/2 III: -x, -y+1, -zIV: -x+1, -y+1, -z V: x-1, y, z VI: x+1, y, z

	Table 8: Selected bond	lengths [Å	Å] and angles ['	°] for Comp	ound 5.
--	------------------------	------------	------------------	-------------	---------

O(1)-Mn(2) ^{II}	2.1883(12)	$O(3)^{I}-Mn(1)-O(1)^{III}$	127.32(5)	
O(1)-Mn (1) ^{III}	2.2925(12)	O(1E)-Mn(1)-O(1) ^{III}	83.69(5)	
O(1E)-Mn(1)	2.2132(14)	$O(2)-Mn(1)-O(4)^{I}$	154.76(5)	
O(2)-Mn(1)	2.1292(13)	$O(5)^{V}$ -Mn(1)-O(4) ^I	93.45(5)	
O(2)-Mn(1) ^{III}	2.4850(13)	$O(3)^{I}-Mn(1)-O(4)^{I}$	57.08(5)	
$O(3)-Mn(1)^{I}$	2.1885(13)	$O(1E)-Mn(1)-O(4)^{I}$	105.36(5)	
O(4)-Mn(2)	2.1270(13)	$O(1)^{III}-Mn(1)-O(4)^{I}$	72.56(4)	
$O(4)-Mn(1)^{I}$	2.3809(14)	$O(2)-Mn(1)-O(2)^{III}$	78.68(5)	
$O(5)-Mn(1)^{IV}$	2.1422(13)	$O(5)^{V}$ -Mn(1)-O(2) ^{III}	82.88(5)	
O(6)-Mn(2)	2.1435(13)	$O(3)^{I}-Mn(1)-O(2)^{III}$	173.98(5)	
$Mn(2)-O(4)^{VI}$	2.1269(13)	O(1E)-Mn(1)-O(2) ^{III}	79.52(5)	
$Mn(2)-O(1)^{VII}$	2.1884(12)	$O(1)^{III}-Mn(1)-O(2)^{III}$	54.41(4)	
$Mn(2)-O(1)^{VIII}$	2.1884(12)	$O(4)^{I}-Mn(1)-O(2)^{III}$	126.14(4)	
		$O(4)^{VI}-Mn(2)-O(4)$	180.0	
$Mn(2)^{II}-O(1)-Mn(1)^{III}$	96.97(5)	O(4)-Mn(2)-O(6) ^{VI}	90.53(5)	
$Mn(1)-O(2)-Mn(1)^{III}$	101.32(5)	O(4) ^{VI} -Mn(2)-O(6)	90.53(5)	
$Mn(2)-O(4)-Mn(1)^{I}$	96.06(5)	O(4)-Mn(2)-O(6)	89.47(5)	
$O(2)-Mn(1)-O(5)^{V}$	84.57(5)	O(6) ^{VI} -Mn(2)-O(6)	180.0	
$O(2)-Mn(1)-O(3)^{I}$	98.69(5)	$O(4)^{VI}-Mn(2)-O(1)^{VII}$	100.27(5)	
$O(5)^{V}-Mn(1)-O(3)^{I}$	102.35(5)	$O(4)-Mn(2)-O(1)^{VII}$	79.73(5)	
O(2)-Mn(1)-O(1E)	81.78(5)	$O(6)^{VI}-Mn(2)-O(1)^{VII}$	92.34(5)	
$O(5)^{V}$ -Mn(1)-O(1E)	159.52(5)	$O(6)-Mn(2)-O(1)^{VII}$	87.66(5)	
$O(3)^{I}-Mn(1)-O(1E)$	94.78(5)	$O(4)-Mn(2)-O(1)^{VIII}$	100.27(5)	
O(2)-Mn(1)-O(1) ^{III}	132.67(5)	$O(6)-Mn(2)-O(1)^{VIII}$	92.34(5)	
$O(5)^{V}-Mn(1)-O(1)^{III}$	94.55(5)	$O(1)^{VII}$ -Mn(2)-O(1) ^{VIII}	180.0	

Symmetry transformations used to generate equivalent atoms:

I: -x, -y+2, -z+1 II: x, y+1, z III: -x, -y+3, -z+1 IV: x+1, y-1, z V: x-1, y+1, z VI: -x+1, -y+1, -z+1 VII: x, y-1, z VIII: -x+1, -y+2, -z+1

Table 9: Hydrogen bonds for Compound 5 [Å and °].

D-H···A	d(D-H)	d(H···A)	$d(D \cdots A)$	<(DHA)
O(1E)-H(1E)O(5)VIII	0.886(16)	1.931(16)	2.8038(19)	168(2)
O(7)- $H(7)$ ···· $O(8)$ ^{IX}	0.84	1.80	2.637(2)	176.5

Symmetry transformations used to generate equivalent atoms:

I: -x, -y+2, -z+1 **II:** x, y+1, z **III:** -x, -y+3, -z+1

IV: x+1, y-1, z **V:** x-1, y+1, z **VI:** -x+1, -y+1, -z+1

VII: x, y-1, z **VIII:** -x+1, -y+2, -z+1 **IX:** -x+1, -y+1, -z