Two new three-dimensional metal-organic frameworks with 4-connected diamondoid and unusual (6,16)-connected net topologies based on planar tetranuclear squares as secondary building units

SongLiang Cai, ShengRun Zheng*, Jun Fan, Rong-Hua Zeng, Wei-Guang Zhang*

School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, P. R. China. E-mail: <u>zhengsr@scnu.edu.cn</u>, wgzhang@scnu.edu.cn; Fax:+86-20-39347768

Supporting information

Compound 1			
Co(1)-O(3)	2.059(3)	Co(1)-O(2W)	2.154(4)
Co(1)-O(1)	2.081(3)	Co(2)-O(2)#3	2.036(4)
Co(1)-N(1)	2.133(4)	Co(2)-O(4)	2.038(4)
Co(1)-O(1W)	2.149(4)	Co(2)-O(3W)	2.141(6)
Co(1)-N(2)	2.152(4)	Co(2)-O(4W)	2.162(6)
O(3)-Co(1)-O(1)	169.82(15)	N(1)-Co(1)-O(2W)	95.28(17)
O(3)-Co(1)-N(1)	106.66(16)	O(1W)-Co(1)-O(2W)	85.83(16)
O(1)-Co(1)-N(1)	78.08(14)	N(2)-Co(1)-O(2W)	160.01(16)
O(3)-Co(1)-O(1W)	91.34(15)	O(2)#3-Co(2)-O(2)#1	92.1(2)
O(1)-Co(1)-O(1W)	84.01(14)	O(2)#3-Co(2)-O(4)	177.66(15)
N(1)-Co(1)-O(1W)	161.98(15)	O(2)#3-Co(2)-O(4)#2	86.50(15)
O(3)-Co(1)-N(2)	77.33(14)	O(4)-Co(2)-O(4)#2	94.8(2)
O(1)-Co(1)-N(2)	111.65(16)	O(2)#3-Co(2)-O(3W)	91.64(18)
N(1)-Co(1)-N(2)	94.37(17)	O(4)-Co(2)-O(3W)	90.31(18)
O(1W)-Co(1)-N(2)	90.36(15)	O(2)#3-Co(2)-O(4W)	88.69(17)
O(3)-Co(1)-O(2W)	83.14(15)	O(4)-Co(2)-O(4W)	89.37(17)
O(1)-Co(1)-O(2W)	87.49(16)	O(3W)-Co(2)-O(4W)	179.5(3)
Compound 2			
Mn(1)-O(8)#1	2.148(5)	Mn(2)-N(2)	2.208(5)

Table S1 Selected bond lengths [Å] and angles[°] for the compounds 1-2.ª

Mn(1)-O(5)	2.152(5)	Mn(3)-O(2)	
Mn(1)-O(1)	2.173(5)	Mn(3)-O(7)#4	2.018(8)
Mn(1)-N(3)	2.215(5)	Mn(3)-O(3)	2.023(6)
Mn(1)-N(4)#1	2.238(5)	Mn(3)-O(6)#4	2.031(6)
Mn(1)-N(1)	2.267(5)	Mn(3)-O(2W)	2.451(15)
Mn(2)-O(4)	2.205(4)	Mn(3)-O(1W)	2.477(16)
D(4)-Mn(2)-N(2) 74.55(17)		O(7)#4-Mn(3)-O(6)#4	91.3(3)
O(4)#2-Mn(2)-N(2)	V(2) 160.3(2) O(3)-Mn(3)-O(6)#4		92.8(2)
O(4)#3-Mn(2)-N(2)	90.8(2)	O(2)-Mn(3)-O(2W)	92.8(4)
O(4)#3-Mn(2)-N(2)#3	74.55(17)	O(7)#4-Mn(3)-O(2W)	82.2(5)
O(4)-Mn(2)-N(2)#2	#2 90.8(2) O(3)-Mn(3)-O(2W)		97.1(4)
O(4)#2-Mn(2)-N(2)#2	74.55(17)	O(6)#4-Mn(3)-O(2W)	75.4(4)
O(4)#3-Mn(2)-N(2)#2	a(2)-N(2)#2 160.3(2) O(2)-Mn(3)-O(1W)		98.9(5)
N(2)-Mn(2)-N(2)#2	Mn(2)-N(2)#2 106.97(15) O(7)#4-M		92.2(5)
O(2)-Mn(3)-O(7)#4	83.6(3)	O(3)-Mn(3)-O(1W)	89.4(5)
O(2)-Mn(3)-O(3)	92.0(3)	O(6)#4-Mn(3)-O(1W)	92.5(5)
O(7)#4-Mn(3)-O(3)	175.5(3)	O(2W)-Mn(3)-O(1W)	166.4(5)
O(2)-Mn(3)-O(6)#4	167.7(4)		

^aSymmetry transformations used to generate equivalentatoms: #1 y - 1/4, -x + 3/4, z + 1/4; #2 -x + 1, y, z; #3 -y + 5/4, -x + 3/4, z + 1/4 for compound 1; #1 -x + 1/4, -z + 3/4, y - 1/4; #2 -z, x + 1/2, -y + 1/2; #3 y - 1/2, -z + 1/2, -x; #4 z, -x+1, -y + 1/2 for compound 2.

Compounds	Type of Ligand L	Coordination modes of Ligand L	Type of configurations of [M ₄ L ₄] SBUs	Four dihedral angles between each imidazole ring plane and tetranuclear square [M ₄ L ₄] plane	Dimension
$\frac{\{[Co_4(HIDC)_4(bpy)_4] \\ \cdot 14H_2O\}_n^{10c}}{}$	H ₃ IDC	μ ₂ - <i>k</i> N,O: <i>k</i> N',O'	Труе І	5.85, 89.35, 5.85, 89.35°	0D
$ \{ [Co_{5}(IDC)_{2}(HIDC)_{2} \\ (phen)_{4}(H_{2}O)_{2}] \\ \cdot 12H_{2}O \}_{n}^{10c} $	H ₃ IDC	μ ₂ -kN,O:kN',O' and μ ₃ -kN,O: kN',O':kO'',O'''	Труе І	0.86, 86.81, 0.86, 86.81°	1D
$\{ [Co_4(HIDC)_4 \\ (pda)_4] \cdot 28H_2O \}_n^{10d} $	H ₃ IDC	μ ₂ - <i>k</i> N,O: <i>k</i> N',O'	Tpye II	84.61, 84.61, 84.61, 84.61°	0D
$ \{ Na_2 [Co_4 (IDC)_4 \\ (bpy)_4] \cdot 12 H_2 O \}_n^{10e} $	H ₃ IDC	μ ₃ - kN,O:kN',O':kO' ',O'''	Труе І	6.24, 89.99, 6.24, 89.99°	1D
$\{[Ni_4(HEIDC)_4 (H_2O)_8] \cdot 2H_2O\}_n^{10a}$	H ₃ EIDC	μ ₂ - <i>k</i> N,O: <i>k</i> N',O'	Tpye II	85.09, 85.09, 85.09, 85.09°	0D
$[Cd(HEIDC)(bix)_{0.5}$ $(H_2O)]_n^{10f}$	H ₃ EIDC	μ ₂ - <i>k</i> N,O: <i>k</i> N',O'	Tpye II	76.38, 76.38, 76.38, 76.38°	2D
$\{ [Cd_4(HPIDC)_4 (H_2O)_8] \cdot 2H_2O \}_n^{10b}$	H ₃ PIDC	μ ₂ - <i>k</i> N,O: <i>k</i> N',O'	Tpye II	78.32, 85.60, 78.32, 85.60°	0D
$\{[Cd_4(HPIDC)_4(py)_8] \\ \cdot 10H_2O\}_n^{10b}$	H ₃ PIDC	μ ₂ - <i>k</i> N,O: <i>k</i> N',O'	Tpye II	80.20, 80.23, 80.20, 80.23°	0D
Compound 1 in this work	H ₃ TFMIDC	μ ₃ - kN,O:kN',O':kO' ',O'''	Труе П	69.91, 71.22, 69.91, 71.22°	3D
Compound 2 in this work	H ₃ TFMIDC	μ ₃ - kN,O:kN',O':kO' ',O'''	Труе П	72.00, 72.18, 72.00, 72.18°	3D

Table S2 Structural comparison of coordination compounds containing tetranuclear square [M₄L₄] SBUs.^b

 ${}^{b}H_{3}EIDC = 2$ -ethyl-1*H*-imidazole-4,5-dicarboxylic acid; $H_{3}PIDC = 2$ -Propyl-1*H*-imidazole-4,5-dicarboxylic acid; bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline; bix = 1,4-bis(imidazol-1-ylmethyl)benzene; pda = 1,2-propanediamine; py = pyridine. References 10a – 10f are given in the main text.

Figure S1. ¹³C NMR spectrum measured in DMSO-*d*₆ of ligand H₃TFMIDC

Figure S2. FT-IR spectrum of ligand $H_3TFMIDC$

Figure S3. FT-IR spectrum of compound 1.

Figure S4. FT-IR spectrum of compound 2.

Figure S5. The four-connected square $[Co_4(TFMIDC)_4]$ SBU in 1.

Figure S6. The 3D two-folded interpenetrated diamondoid framework of 1 discriminated by colors.

Figure S7. Schematic representation for the16-connected tetranuclear square SBU (a) and 6-connected Mn2 ion (b) in **2**.

Figure S8. Views of the defined 16-connected and 6-connected nodes, as well as the whole topological net of compound 2.

Figure S9 The simulated X-ray powder diffraction patterns (black) and the measured one (red) of compound 1.

Figure S10 The simulated X-ray powder diffraction patterns (black line) and the measured one (red line) of compound 2.

Figure S11 The simulated X-ray powder diffraction patterns of cubic Co_3O_4 (black line, JCPDS card no. 43-1003) and the measured one (red line) of the residue after thermal decomposition of compound 1.

Figure S12 The simulated X-ray powder diffraction patterns of cubic Mn₂O₃ (blue line, JCPDS card no. 41-1442), and tetragonal Mn₃O₄ (black line, JCPDS card no. 24-0734), as well as the measured one (red line) of the residue after thermal decomposition of compound **2**.