Electronic Supplementary Information

Excitation wavelength-induced color tunable and white-light emissions in lanthanide(III) coordination polymers constructed by an environmentdependent luminescent tetrazolate-dicarboxylate ligand

Yu Xiao,^{*a,b*} Shuai-Hua Wang,^{*a*} Fa-Kun Zheng, ^{*,*a*} Mei-Feng Wu,^c Ju-Xu,^a Zhi-Fa Liu,^{*a*} Jun Chen,^{*a,b*} Rong Li^{*a,b*} and Guo-Cong Guo^{*a*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100039, P. R. China

^c School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, P. R. China

1				
Sm(1)-O(2)#1	2.344(2)	Sm(1)–O(3)	2.406(2)	
Sm(1)–O(1)#2	2.353(2)	Sm(1)–O(2W)	2.445(3)	
Sm(1)–O(1W)	2.383(3)	Sm(1)–O(4)#3	2.490(2)	
Sm(1) –O(3W)	2.389(3)	Sm(1) –O(3)#3	2.616(2)	
O(2)#1-Sm(1)-O(1)#2	88.14(9)	O(3)-Sm(1)-O(2W)	88.41(9)	
O(2)#1-Sm(1)-O(1W)	97.65(11)	O(2)#1-Sm(1)-O(4)#3	78.34(8)	
O(1)#2-Sm(1)-O(1W)	141.75(10)	O(1)#2-Sm(1)-O(4)#3	145.61(10)	
O(2)#1-Sm(1)-O(3W)	85.46(11)	O(1W)-Sm(1)-O(4)#3	72.02(10)	
O(1)#2-Sm(1)-O(3W)	71.22(10)	O(3W)-Sm(1)-O(4)#3	76.25(9)	
O(1W) Sm(1)–O(3W)	146.70(10)	O(3)-Sm(1)-O(4)#3	117.72(8)	

Table S1 Selected bond lengths (Å) and angles (°) for compounds 1-4

O(2)#1-Sm(1)-O(3)	163.16(9)	O(2W)-Sm(1)-O(4)#3	132.28(8)
O(1)#2-Sm(1)-O(3)	80.77(9)	O(2)#1-Sm(1)-O(3)#3	128.19(8)
O(1W)-Sm(1)-O(3)	83.67(10)	O(1)#2-Sm(1)-O(3)#3	126.77(8)
O(3W)-Sm(1)-O(3)	102.71(10)	O(1W)-Sm(1)-O(3)#3	77.84(10)
O(2)#1-Sm(1)-O(2W)	76.12(9)	O(3W)-Sm(1)-O(3)#3	74.45(9)
O(1)#2-Sm(1)-O(2W)	72.54(9)	O(3)–Sm(1)–O(3)#3	68.57(9)
O(1W)-Sm(1)-O(2W)	72.31(10)	O(2W)-Sm(1)-O(3)#3	144.06(9)
O(3W)-Sm(1)-O(2W)	139.62(10)	O(4)#3-Sm(1)-O(3)#3	50.86(8)

Symmetry transformations used to generate equivalent atoms: for 1: (#1) x, y - 1, z; (#2) -x + 1, -y + 2, -z; (#3) -x, -y + 1, -z.

2				
Eu(1)–O(3)#1	2.335(2)	Eu(1)-O(1)	2.392(2)	
Eu(1)–O(4)#2	2.347(3)	Eu(1)–O(2W)	2.436(2)	
Eu(1)–O(3W)	2.368(3)	Eu(1)–O(2)#3	2.480(2)	
Eu(1)–O(1W)	2.372(3)	Eu(1)–O(1)#3	2.609(2)	
O(3)#1-Eu(1)-O(4)#2	88.27(8)	O(1)–Eu(1)–O(2W)	88.52(9)	
O(3)#1-Eu(1)-O(3W)	72.39(9)	O(3)#1-Eu(1)-O(2)#3	146.43(10)	
O(4)#2-Eu(1)-O(3W)	85.60(10)	O(4)#2-Eu(1)-O(2)#3	78.46(8)	
O(3)#1-Eu(1)-O(1W)	140.88(10)	O(3W)–Eu(1)–O(2)#3	75.92(9)	
O(4)#2-Eu(1)-O(1W)	97.59(10)	O(1W)-Eu(1)-O(2)#3	72.06(9)	
O(3W)–Eu(1)–O(1W)	146.41(9)	O(1)–Eu(1)–O(2)#3	117.50(8)	
O(3)#1–Eu(1)–O(1)	80.59(8)	O(2W)-Eu(1)-O(2)#3	132.16(8)	
O(4)#2-Eu(1)-O(1)	163.23(8)	O(3)#1-Eu(1)-O(1)#3	126.82(8)	
O(3W)–Eu(1)–O(1)	102.71(10)	O(4)#2-Eu(1)-O(1)#3	128.45(7)	
O(1W)–Eu(1)–O(1)	83.61(10)	O(3W)-Eu(1)-O(1)#3	73.90(9)	
O(3)#1-Eu(1)-O(2W)	72.00(9)	O(1W)-Eu(1)-O(1)#3	78.23(10)	
O(4)#2-Eu(1)-O(2W)	76.07(9)	O(1)–Eu(1)–O(1)#3	68.24(8)	

O(3W)–Eu(1)–O(2W)	140.16(9)	O(2W)–Eu(1)–O(1)#3	144.06(8)
O(1W)–Eu(1)–O(2W)	72.04(9)	O(2)#3-Eu(1)-O(1)#3	51.06(8)

Symmetry transformations used to generate equivalent atoms: for **2**: (#1) -x + 1, -y + 2, -z; (#2) x, y - 1, z; (#3) -x, -y + 1, -z.

3				
Gd(1)-O(3)#1	2.318(3)	Gd(1)-O(1)#3	2.365(3)	
Gd(1)-O(4)#2	2.322(2)	Gd(1)–O(1W)	2.407(2)	
Gd(1)-O(2W)	2.339(3)	Gd(1)–O(2)	2.460(2)	
Gd(1)–O(3W)	2.347(3)	Gd(1)–O(1)	2.599(2)	
O(3)#1-Gd(1)-O(4)#2	88.04(9)	O(1)#3-Gd(1)-O(1W)	88.30(9)	
O(3)#1-Gd(1)-O(2W)	85.29(10)	O(3)#1–Gd(1)–O(2)	78.46(8)	
O(4)#2-Gd(1)-O(2W)	71.76(9)	O(4)#2–Gd(1)–O(2)	145.66(9)	
O(3)#1-Gd(1)-O(3W)	97.76(11)	O(2W)–Gd(1)–O(2)	75.74(9)	
O(4)#2-Gd(1)-O(3W)	141.80(10)	O(3W)–Gd(1)–O(2)	71.93(9)	
O(2W)-Gd(1)-O(3W)	146.14(10)	O(1)#3-Gd(1)-O(2)	117.55(8)	
O(3)#1-Gd(1)-O(1)#3	163.23(8)	O(1W)–Gd(1)–O(2)	132.24(9)	
O(4)#2-Gd(1)-O(1)#3	80.86(9)	O(3)#1–Gd(1)–O(1)	128.67(8)	
O(2W)–Gd(1)–O(1)#3	102.90(11)	O(4)#2–Gd(1)–O(1)	126.33(9)	
O(3W)–Gd(1)–O(1)#3	83.65(11)	O(2W)–Gd(1)–O(1)	74.02(9)	
O(3)#1-Gd(1)-O(1W)	76.36(9)	O(3W)–Gd(1)–O(1)	78.05(10)	
O(4)#2-Gd(1)-O(1W)	72.72(9)	O(1)#3–Gd(1)–O(1)	68.04(9)	
O(2W)-Gd(1)-O(1W)	140.31(9)	O(1W)–Gd(1)–O(1)	143.73(9)	
O(3W)–Gd(1)–O(1W)	72.12(9)	O(2)–Gd(1)–O(1)	51.29(8)	

Symmetry transformations used to generate equivalent atoms: for **3**: (#1) -x, -y + 2, -z; (#2) x + 1, y + 1, z; (#3) -x, -y + 3, -z.

4				
Gd(1)-O(3)#1	2.324(2)	Gd(1)-O(1)#3	2.374(2)	
Gd(1)-O(4)#2	2.330(2)	Gd(1)-O(1W)	2.414(2)	

Gd(1)-O(2W)	2.350(2)	Gd(1)-O(2)	2.467(2)
Gd(1)-O(3W)	2.347(3)	Gd(1)-O(1)	2.609(2)
Eu(1)–O(3)#1	2.324(2)	Eu(1)-O(1)#3	2.374(2)
Eu(1)–O(4)#2	2.330(2)	Eu(1)–O(1W)	2.414(2)
Eu(1)–O(2W)	2.350(2)	Eu(1)–O(2)	2.467(2)
Eu(1)–O(3W)	2.347(3)	Eu(1)–O(1)	2.609(2)
O(3)#1-Gd(1)-O(4)#2	87.86(8)	O(1)#3-Gd(1)-O(1W)	88.44(8)
O(3)#1-Gd(1)-O(2W)	85.58(9)	O(3)#1-Gd(1)-O(2)	78.46(7)
O(4)#2-Gd(1)-O(2W)	71.65(8)	O(4)#2-Gd(1)-O(2)	145.66(8)
O(3)#1-Gd(1)-O(3W)	97.70(9)	O(2W)-Gd(1)-O(2)	75.97(8)
O(4)#2-Gd(1)-O(3W)	141.71(9)	O(3W)-Gd(1)-O(2)	71.96(9)
O(2W)-Gd(1)-O(3W)	146.32(9)	O(1)#3-Gd(1)-O(2)	117.72(7)
O(3)#1-Gd(1)-O(1)#3	163.08(8)	O(1W)-Gd(1)-O(2)	131.97(8)
O(4)#2-Gd(1)-O(1)#3	80.83(8)	O(3)#1-Gd(1)-O(1)	128.53(7)
O(2W)-Gd(1)-O(1)#3	102.55(9)	O(4)#2-Gd(1)-O(1)	126.57(7)
O(3W)-Gd(1)-O(1)#3	83.82(9)	O(2W)-Gd(1)-O(1)	73.90(8)
O(3)#1-Gd(1)-O(1W)	76.14(8)	O(3W)-Gd(1)-O(1)	78.14(9)
O(4)#2-Gd(1)-O(1W)	72.80(8)	O(1)#3-Gd(1)-O(1)	68.34(8)
O(2W)-Gd(1)-O(1W)	140.37(8)	O(1W)-Gd(1)-O(1)	143.86(8)
O(3W)-Gd(1)-O(1W)	71.92(9)	O(2)-Gd(1)-O(1)	51.16(7)
O(3)#1–Eu(1)–O(4)#2	87.86(8)	O(1)#3-Eu(1)-O(1W)	88.44(8)
O(3)#1-Eu(1)-O(2W)	85.58(9)	O(3)#1-Eu(1)-O(2)	78.46(7)
O(4)#2-Eu(1)-O(2W)	71.65(8)	O(4)#2-Eu(1)-O(2)	145.66(8)
O(3)#1-Eu(1)-O(3W)	97.70(9)	O(2W)-Eu(1)-O(2)	75.97(8)
O(4)#2-Eu(1)-O(3W)	141.71(9)	O(3W)-Eu(1)-O(2)	71.96(9)
O(2W)-Eu(1)-O(3W)	146.32(9)	O(1)#3-Eu(1)-O(2)	117.72(7)
O(3)#1-Eu(1)-O(1)#3	163.08(8)	O(1W)-Eu(1)-O(2)	131.97(8)

O(4)#2-Eu(1)-O(1)#3	80.83(8)	O(3)#1-Eu(1)-O(1)	128.53(7)
O(2W)-Eu(1)-O(1)#3	102.55(9)	O(4)#2-Eu(1)-O(1)	126.57(7)
O(3W)-Eu(1)-O(1)#3	83.82(9)	O(2W)-Eu(1)-O(1)	73.90(8)
O(3)#1-Eu(1)-O(1W)	76.14(8)	O(3W)-Eu(1)-O(1)	78.14(9)
O(4)#2-Eu(1)-O(1W)	72.80(8)	O(1)#3-Eu(1)-O(1)	68.34(8)
O(2W)-Eu(1)-O(1W)	140.37(8)	O(1W)-Eu(1)-O(1)	143.86(8)
O(3W)-Eu(1)-O(1W)	71.92(9)	O(2)-Eu(1)-O(1)	51.16(7)

Symmetry transformations used to generate equivalent atoms: for 4: (#1) –x, –y, –z; (#2) x + 1; y

+ 1, z; (#3) –x, –y + 1, –z; (#4) x – 1, y – 1, z.

λ_{ex}/nm	(x, y)	CRI	CCT/K
340	(0.53, 0.36)	33	1728
345	(0.49, 0.35)	43	1833
350	(0.44, 0.34)	65	2301
352	(0.41, 0.33)	73	2739
354	(0.38, 0.32)	79	3480
356	(0.35, 0.32)	84	4454
358	(0.33, 0.31)	87	5748
360	(0.31, 0.31)	90	7000
365	(0.29, 0.30)	94	8716
370	(0.26, 0.30)	87	10958
384	(0.25, 0.30)	78	11849

Table S2 CIE coordinates (x, y), CRI and CCT for compound 1

Table S3 CIE coordinates (x, y), CRI and CCT for compound 4

λ_{ex}/nm	(x, y)	CRI	CCT/K
340	(0.48, 0.34)	56	1915
345	(0.45, 0.35)	67	2301
350	(0.41, 0.34)	75	3025
355	(0.36, 0.34)	84	4177
360	(0.33, 0.33)	89	5489
365	(0.31, 0.32)	92	6957
370	(0.29, 0.31)	94	8206

Table S4 CIE coordinates(x, y) for the Eu(III)-doped Gd(III) frameworks

λ_{n}/n	Eu _{0.009} Gd _{0.99}	Eu _{0.02} Gd _{0.9}	$Eu_{0.04}Gd_{0.9}$	Eu _{0.06} Gd _{0.9}	Eu _{0.07} Gd _{0.9}	Eu _{0.11} Gd _{0.8}
m	1	8	6	4	3	9
111	(x, y)	(x,y)	(x, y)	(x, y)	(x, y)	(x, y)
340	(0.40, 0.47)	(0.42, 0.45)	(0.43, 0.43)	(0.45, 0.39)	(0.43, 0.41)	(0.48, 0.33)
345	(0.39, 0.47)	(0.40, 0.45)	(0.42, 0.43)	(0.43, 0.40)	(0.41, 0.40)	(0.45, 0.34)
350	(0.38, 0.46)	(0.39, 0.44)	(0.40, 0.43)	(0.40, 0.39)	(0.39, 0.39)	(0.40, 0.33)
355	(0.36, 0.44)	(0.36, 0.42)	(0.37, 0.41)	(0.37, 0.38)	(0.35, 0.37)	(0.36, 0.32)
360	(0.34, 0.41)	(0.34, 0.39)	(0.34, 0.38)	(0.33, 0.36)	(0.32, 0.34)	(0.32, 0.31)
365	(0.31, 0.38)	(0.31, 0.37)	(0.30, 0.35)	(0.31, 0.34)	(0.29, 0.32)	(0.30, 0.30)
370	(0.28, 0.35)	(0.28, 0.34)	(0.28, 0.33)	(0.29, 0.32)	(0.27, 0.30)	(0.28, 0.30)

Scheme S1 The synthetic route of H₃TPIA

Synthesis of dimethyl 5-(4-cyanophenoxy)isophthalate (II). The mixture of 4-flurobenzonitrile (12.1 g, 0.1 mol), dimethyl 5-hydroxyisophthalate I (10.5 g, 0.05 mol) and K₂CO₃ (13.8 g, 0.1 mol) in 500 mL DMF was refluxed for overnight under N₂ atmosphere and then poured into cold water. Pure product of II was obtained from recrystallization in EtOH with a yield of 95%. Anal. Calcd for C₁₇H₁₃NO₅: C, 65.59; H, 4.21; N, 4.50%. Found: C, 65.42; H, 4.15; N, 4.33%.

Synthesis of dimethyl 5-(4-(2H-tetrazol-5-yl)phenoxy)isophthalate (III). The mixture of II (3.1 g, 0.01 mol), NaN₃ (2.0 g, 0.03 mol), and triethylamine hydrochloride (4.1 g, 0.03 mol) in 100 mL toluene was refluxed for 3 days under N₂ atmosphere and then 100 mL 0.1 M NaOH was dropped. The water solution was separated and acidified with dilute hydrochloric acid. White solid was obtained and recrystallized in EtOH with a yield of 90%. ESI–MS: m/z $[M - H]^-$, 353.3 (calcd for C₁₇H₁₄N₄O₅, 354.3). Anal. Calcd for C₁₇H₁₄N₄O₅: C, 57.63; H, 3.98; N, 15.81%. Found: C, 57.52; H, 3.90; N, 15.83%.

Synthesis of 5-(4-(tetrazol-5-yl)phenoxy) isophthalic acid IV (H₃TPIA). The mixture of III (1.8 g, 0.005 mol) and 2 mL concentrated hydrochloric acid in 100 mL H₂O was refluxed for 1 day and then filtrated. The white solid was recrystallized in EtOH with a yield of 92%. ESI–MS: $m/z [M - H]^-$, 325.4 (calcd for C₁₅H₁₀N₄O₅, 326.3). Anal. Calcd for C₁₅H₁₀N₄O₅: C, 55.22; H, 3.09; N, 17.17%. Found: C, 55.15; H, 2.96; N, 17.05%.

Fig. S1 ESI-MS of H₃TPIA

Fig. S2 ¹H NMR spectrum of H₃TPIA in DMSO-d₆

Fig. S3 ¹³C NMR spectrum of H₃TPIA in DMSO-d₆

Fig. S4 FT-IR of H₃TPIA and **1–3**.

Fig. S5 PXRD patterns for the as-synthesized compounds 1–4 and the simulated one from singlecrystal X-ray diffraction data.

Fig. S6 Electron microscopy mapping studies of a portion of the $[(Eu_{0.12}Gd_{0.88})(TPIA)(H_2O)_3] \cdot 5.5H2O$ (4).

Fig. S7 (a) Cell parameters. (b) Crystallographicall identified Ln–O bond distances. (c) Ideal Ln(III) ionic radii in mono- and bimetallic Ln-MOFs (normalized for mixed Ln(III) ions according to corresponding Ln(III) ion content in mixed-Ln-MOFs **4**).

Fig. S8 The TGA curves of compounds 1–4.

Fig. S9 The fluorescent decay curves for 1

Fig. S10 The fluorescent decay curves for 2

Fig. S11 (a) Emission spectra of compound **1** and $Sm(NO_3)_3 \cdot 6H_2O$ when excited at 340 nm; (b) Emission spectra of compound **2** and $Eu(NO_3)_3 \cdot 6H_2O$ when excited at 395 nm.

Fig. S12 The fluorescent decay curves for 3

Fig. S13 UV-Vis absorption spectra of the free ligand H₃TPIA in methanol solution.

Fig. S14 The emission spectrum of 3 at 77K

Fig. S15 The emission spectrum of 4 excited at 340 nm

Fig. S16 The emission spectra (upper) and 1931 CIE chromaticity diagrams (lower) of different doping concentrations of Eu(III) ion embedded in **3** excited at different wavelengths.