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Figure S1. The SEM images of nanorods fabricated in acidic bath by adding HCI at (a)pH 6.2,
(b) pH 5.9, (c) pH 5.0. After KOH etching, the etched morphologies of nanorods of (d) pH 6.2 (f)

pH 5.9, (c) pH 5.1.



Figure S2. The SEM images of nanorods fabricated in acidic bath by adding NH; at (a) pH 9.8,
(b) pH 10.1, (c) pH 10.2. After KOH etching, the etched morphologies of nanorods of (d) pH 9.8

(f) pH 10.1, (c) pH 10.2
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Figu
re S3. The schematic diagram of homogenously-grown nanoparticles and heterogeneously-
growth of ZnO nanorods. The homogenously-grown nanoparticles consist of several nanorods

before etching and nanotubes after etching.



In thermodynamic model of predominance, the stability constants are adopted from Hubert et al.’

and Goux et al.” The detailed calculation method has been mentioned in the book written by

Benjamin.3

Temperature (°C) LogK; |LogK, |LogK; |LogK,; |LogKs |LogKs |LogK; | LogK;s
25 6.17 10.08 14.26 1549 | 2.43 4.92 7.48 9.26
50 6.47 10.13 13.83 1490  [230 4.59 6.91 8.42
60 6.59 10.17 13.73 1474 |2.26 4.47 6.69 8.10
70 6.71 10.23 13.64 14.61 2.23 4.36 6.48 7.78
80 6.83 10.29 13.59 1450 | 2.21 4.25 6.27 7.46
90 6.95 10.36 13.55 14.43 2.20 4.15 6.06 7.15
List of equilibrium in the chemical bath stability constant
Zn*t + OH™ = Zn(OH)™ K, (51)
Zn** + 20H™ = Zn(0H), K, (52)
Zn** + 30H™ = Zn(0H); K, (53)
Zn** + 40H™ = Zn(0H), K, (54)
Zn** + NHy = Zn(NHJ)** K (55)
Zn** + 2NH; = Zn(NH,)?, K¢ (56)
Zn** + 3NH, = Zn(NHJ)%S K, (S7)
Zn** + 4 NH, = Zn(NH;)*/ Kg (58)



By the conservation principle to this chemical bath system, the total concentration of Zinc ions is

equal to the sum of the concentrations of all Zinc ions species, below:

[Zn] = [2n?* ] + [Zn(0H) * ] + [Zn(0H),] + [Zn(OH) 5] + [Zn(OH)24—] + [Zn(NH3)2 +] +
[Zn(NH3)? | + [Zn(NH,)?S | + [Zn(NH;)? |

By using the eq. S1-9, we can calculate the distribution of each Zinc complex ions species.
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