Electronic Supplementary Information

For

Guest-triggered assembly of zinc(II) supramolecular isomers with accompanying dimensional change and reversible single-crystal-to-singlecrystal transformation

Huiyeong Ju, ${ }^{\text {a }}$ In-Hyeok Park, ${ }^{\text {a }}$ Eunji Lee, ${ }^{\text {a }}$ Seulgi Kim, ${ }^{\text {a }}$ Jong Hwa Jung, ${ }^{a}$ Mari Ikeda, ${ }^{\text {b }}$ Yoichi Habata*, ${ }^{\text {c }}$ and Shim Sung Lee ${ }^{*, a}$
${ }^{a}$ Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, South Korea.
${ }^{b}$ Education Center, Faculty of Engineering, Chiba Institute of Technology, 2-1-1
Shibazono, Narashino, Chiba 275-0023, Japan.
${ }^{c}$ Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 261-0013, Japan.

List of Tables and Figures

Table S1 Crystallographic data and structure refinement 3
Table S2 Selected bond lengths and bond angles for $\mathbf{1}$ 4
Table S3 Selected bond lengths and bond angles for 2 4
Table S4 Selected bond lengths and bond angles for 3 4
Table S5 Selected bond lengths and bond angles for 4 4
Fig. S1 Packing structures of $\mathbf{2}$ and $\mathbf{3}$ 5
Fig. S2 The interactions between solvent molecules and the 2D network 5
Fig. S3 Irreversible conversion of $\mathbf{2}$ to $\mathbf{4}$ 6
Fig. S4 AFM images of a crystal of $\mathbf{2}$ after immersing in benzene- 6
Fig. S5 Solid-state photoluminescence spectra 7
Fig. S6 TGA curves 7

Table S1 Crystallographic data and structure refinement for 1, 2, 2a, 3 and 4

	1	2	2a	3	4
Formula	$\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Zn}_{2}$	$\mathrm{C}_{60} \mathrm{H}_{88} \mathrm{~N}_{12} \mathrm{O}_{18} \mathrm{Zn}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Zn}$	$\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Zn}$	$\mathrm{C}_{60} \mathrm{H}_{81} \mathrm{~N}_{9} \mathrm{O}_{13} \mathrm{Zn}_{2}$
Formula weight	939.58	1396.16	469.79	665.06	1267.08
Temperature (K)	173(2)	173(2)	173(2)	173(2)	173(2)
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Monoclinic
Space group	C2/c	$P 2{ }_{1} / \mathrm{c}$	Pbca	$P 2_{1} / \mathrm{c}$	$P 2{ }_{1} / n$
Z	8	4	8	4	2
$a(\AA)$	12.0935(6)	19.5006(5)	18.6866(13)	9.987(4)	10.3361(4)
b (\AA)	34.0051(17)	20.5981(6)	15.8553(12)	$22.605(12)$	20.4349(7)
$c(\AA)$	31.9458(16)	18.7188(5)	22.302(2)	17.815(6)	16.2418(5)
$\alpha\left({ }^{\circ}\right)$	90	90	90	90	90
$\beta\left({ }^{\circ}\right)$	93.564(3)	116.0640(10)	90	121.513(17)	91.807(2)
$\gamma\left({ }^{\circ}\right.$	90	90	90	90	90
$V\left(\AA^{3}\right)$	13112.0(11)	6754.2(3)	6607.6(9)	3429(3)	3428.8(2)
$D_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	0.952	1.373	0.944	1.288	1.227
$\mu\left(\mathrm{mm}^{-1}\right)$	0.773	0.787	0.767	0.760	0.762
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$	52.00	52.00	52.00	52.00	52.00
reflections collected	80312	108241	57668	24532	47173
reflections	12888	13269	6101	6730	6741
reflections	[$\mathrm{R}(\mathrm{int})=0.0798]$	[$\mathrm{R}(\mathrm{int}$) $=0.0928$]	$[\mathrm{R}(\mathrm{int})=0.1110]$	$[\mathrm{R}(\mathrm{int})=0.0949]$	$[\mathrm{R}($ int $)=0.0916]$
goodness-of-fit on F2	0.889	1.108	1.024	1.021	1.095
$R 1, w R 2[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\begin{aligned} & \mathrm{R} 1=0.0535, \\ & \mathrm{wR} 2=0.1332 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0701, \\ & \mathrm{wR} 2=0.1779 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.1201, \\ & \mathrm{wR} 2=0.3174 \end{aligned}$	$\begin{aligned} & \text { R1 }=0.0677, \\ & \text { wR2 }=0.13 .88 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0782 \\ & \mathrm{wR} 2=0.2376 \end{aligned}$
R1, wR2 (all data)	$\begin{aligned} & \mathrm{R} 1=0.1069 \\ & \mathrm{wR} 2=0.1446 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.1227, \\ & \mathrm{wR} 2=0.2044 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.2215, \\ & \mathrm{wR} 2=0.3491 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.1547, \\ & \mathrm{wR} 2=0.1801 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.1281, \\ & \mathrm{wR} 2=0.2753 \end{aligned}$

Table S2 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{1}^{a}$

Zn1-O5	$1.938(2)$	Zn1-O1	$1.956(2)$
Zn1-N1	$1.994(3)$	Zn1-N5	$2.042(3)$
Zn2-O3A	$1.944(3)$	Zn2-O8	$1.990(2)$
Zn2-N7	$2.001(3)$	Zn2-N4B	$2.035(3)$
O5-Zn1-O1	$105.53(1)$	O5-Zn1-N1	$126.30(1)$
O1-Zn1-N1	$111.62(1)$	O5-Zn1-N5	$105.55(1)$
O1-Zn1-N5	$98.69(1)$	N1-Zn1-N5	$105.57(1)$
O3A-Zn2-O8	$114.55(1)$	O3A-Zn2-N7	$123.72(1)$
O8-Zn2-N7	$104.39(1)$	O3A-Zn2-N4B	$108.83(1)$
O8-Zn2-N4B	$97.51(1)$	N7-Zn2-N4B	$104.31(1)$

${ }^{a}$ Symmetry operations: (A) $\mathrm{x}-1 / 2, \mathrm{y}-1 / 2, \mathrm{z}$; (B) $\mathrm{x}-1,-\mathrm{y}+1, \mathrm{z}+1 / 2$.

Table S3 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{2}^{a}$

Zn1-O1	$1.954(4)$	Zn1-N1	$2.041(4)$
Zn1-O3A	$1.955(3)$	Zn1-N8B	$2.012(4)$
Zn2-O5	$1.967(3)$	Zn2-N4	$2.025(4)$
Zn2-O7C	$1.967(4)$	Zn2-N5	$2.023(4)$
O1-Zn1-O3A	$108.9(2)$	O1-Zn1-N8B	$121.3(2)$
O3A-Zn1-N8B	$107.0(2)$	O1-Zn1-N1	$113.0(2)$
O3A-Zn1-N1	$98.8(2)$	N8B-Zn1-N1	$105.4(2)$
O7C-Zn2-O5	$110.3(2)$	O7C-Zn2-N5	$113.4(2)$
O5-Zn2-N5	$99.4(2)$	O7C-Zn2-N4	$122.2(2)$
O5-Zn2-N4	$108.4(2)$	N5-Zn2-N4	$100.5(2)$

${ }^{a}$ Symmetry operations: (A) $\mathrm{x},-\mathrm{y}+3 / 2, \mathrm{z}+1 / 2$; (B) $\mathrm{x}, \mathrm{y}+1, \mathrm{z}$; (C) $\mathrm{x},-\mathrm{y}+1 / 2, \mathrm{z}+1 / 2$.

Table S4 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{3}^{a}$

Zn1-O1	$1.941(3)$	Zn1-N1	$2.033(5)$
Zn1-O3A	$1.960(3)$	Zn1-N4B	$2.038(4)$
O1-Zn1-O3A	$110.1(2)$	O1-Zn1-N1	$128.1(2)$
O3A-Zn1-N1	$105.0(2)$	O1-Zn1-N4B	$108.3(2)$
O3A-Zn1-N4B	$100.9(2)$	N1-Zn1-N4B	$100.9(2)$

${ }^{a}$ Symmetry operations: (A) $\mathrm{x}-1,-\mathrm{y}+3 / 2, \mathrm{z}-1 / 2$; (B) $-\mathrm{x}+1, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$.

Table S5 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{4}^{a}$

Zn1-O1	$1.957(1)$	Zn1-N1	$2.024(2)$
Zn1-O3A	$1.928(1)$	Zn1-N4B	$2.031(2)$
O1-Zn1-O3A	$113.8(6)$	O1-Zn1-N1	$107.0(6)$
O3A-Zn1-N1	$118.9(6)$	O1-Zn1-N4B	$97.6(6)$
O3A-Zn1-N4B	$113.7(6)$	N1-Zn1-N4B	$103.3(7)$

${ }^{a}$ Symmetry operations: (A) x-1/2, $-\mathrm{y}+1 / 2, \mathrm{z}-1 / 2$; (B) $-\mathrm{x}+1 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$.

Fig. S1 Packing structures of (a) 2 and (b) 3.

(a)

(b)

Fig. S2 The interactions between the solvent molecules and the 2D networks. (a) The Hbonded DMA and water molecules in $\mathbf{2}$ and (b) the benzene molecules showing the edge-toface $\pi-\pi$ stacking interactions (yellow dashed lines: 3.62 and $3.63 \AA$; pink dashed lines: $3.01 \AA$) in 3.

Fig. S3 Irreversible conversion of (a) 2 to (b) $\mathbf{4}$ via the SCSC transformation after immersion in cyclohexane.

Fig. S4 AFM images (top) and profiles (bottom) of the surface of a crystal of $\mathbf{2}$ after immersing in benzene: (a) before solvent exchange, (b) 6 h , (c) 24 h and (d) 48 h . Image size is $1.5 \times 1.5 \mu \mathrm{~m}$ in all cases.

Fig. S5 Solid-state photoluminescence spectra of bpp, $\mathrm{H}_{2} \mathrm{bdc}, \mathbf{1}, \mathbf{2}, 3$ and 4 at room temperature (excitation at 290 nm).

Fig. S6 TGA curves for 1, 2 and $\mathbf{3}$.

