Supplemental Information:

K(Mn,Zn)F₃ Mesoporous Microspheres: One-Pot Synthesis via the Nanoscale Kirkendall Effect

S. Ding,¹ X. F. Yang,² T. T. Deng,³ E. H. Song,¹ Z. J. Ma,¹ S. Ye,¹ M. M. Wu,³ Q. Y. Zhang ^{1,a)}

¹State Key Laboratory of Luminescent Materials and Devices, and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641, P. R. China. E-mail: qyzhang@scut.edu.cn; Fax: +86-20-87110608

²*Analytical and Testing Center, South China University of Technology, Guangzhou 510641, P. R. China*

³School of Chemistry and Chemical Engineering, and Instrumental Analysis and Research Centre, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, P. R. China

a) Author to whom correspondence should be addressed; electronic mail: <u>qyzhang@scut.edu.cn</u>

Figure S1. SEM images of samples obtained with different amounts of K₃Cit as chelating agent at 220 °C for 5 h: (a) 0 mmol, (b) 1 mmol, (c) 2 mmol, and (d) their corresponding XRD patterns.

Figure S2. SEM images of samples obtained with different reactive species ratios $(Zn^{2+}/Mn^{2+} \text{ molar ratio})$ at 220 °C for 5 h in the presence of 1 mmol K₃Cit: (a) 80/20 mol%, (b)70/30 mol%, (c) 60/40 mol%, (d) 50/50 mol%, and (e) their corresponding XRD patterns.

Figure S3. Schematic energy level diagram showing the possible up-conversion mechanism of the $K(Mn,Zn)F_3$: 0.5%Yb³⁺, 0.5%Er³⁺ microspheres under 980 nm laser excitation.

Figure S4. Magnetization as a function of the applied field for the porous $K(Mn,Zn)F_3$: Yb^{3+} , $Er^{3+}microspheres$ at room temperature.

Figure S5. FT-IR spectra of (a) $K(Mn,Zn)F_3$: Yb³⁺, Er³⁺ microspheres, (b) IBU-loaded $K(Mn,Zn)F_3$: Yb³⁺, Er³⁺ microspheres, and (c) IBU alone.

Figure S6. TG curve of IBU-loaded K(Mn,Zn)F₃: Yb³⁺, Er³⁺microspheres.

Figure S7. Up-conversion emission spectra of IBU-K(Mn,Zn)F₃: Yb³⁺, Er³⁺ microspheres in SBF buffer at different release times.

Figure S8. FT-IR spectra of IBU-loaded K(Mn,Zn)F₃: Yb³⁺, Er³⁺microspheres with different cumulatively released drug in SBF: (a) 0%, (b) 33%, (c) 35%, (d) 65%, (e) 96%.