Supporting Information

Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Javier Troyano,^a Josefina Perles,^b Pilar Amo-Ochoa,^a Félix Zamora^{*a} and Salomé Delgado^{*a}

Figure S1. XRPD pattern of 1. Experimental (orange) and simulated (black).

Figure S2. XRPD pattern of 2. Experimental (pink) and simulated (black).

Figure S3. XRPD pattern of 3. Experimental (blue) and simulated (black).

Figure S4. XRPD pattern of 4. Experimental (green) and simulated (black).

Figure S5. XRPD pattern of 5. Experimental (red) and simulated (black).

Figure S6. XRPD pattern of 6. Experimental (green) and simulated (black).

Single crystal X-ray diffraction supplementary information for 1-6

a) Single crystal X-ray diffraction supplementary information for 1

A clear yellow prismatic-like specimen of $C_7H_9ClCuN_2S$, approximate dimensions 0.02 mm x 0.05 mm x 0.23 mm, was used for the X-ray crystallographic analysis.

Data collection and integration

A total of 864 frames were collected. The total exposure time was 2.40 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 7463 reflections to a maximum θ angle of 25.10° (0.84 Å resolution), of which 1698 were independent (average redundancy 4.395, completeness = 99.9%, R_{int} = 2.40%, R_{sig} = 2.18%) and 1375 (80.98%) were greater than $2\sigma(F^2)$. Unit cell

The final cell constants of a = 8.127(3) Å, b = 15.76(1) Å, c = 8.041(3) Å, $\beta = 111.816(9)^{\circ}$, volume = 956.4(8) Å³, are based upon the refinement of the XYZ-centroids of 2637 reflections above 20 $\sigma(I)$ with 5.218° < 20 < 55.53°.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.782. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.5729 and 0.9475.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P2_1/c$, with Z = 4 for the formula unit, $C_7H_9ClCuN_2S$. The final anisotropic full-matrix least-squares refinement on F² with 110 variables converged at R₁ = 2.64%, for the observed data and wR_2 = 6.74% for all data. The goodness-of-fit was 1.000.

The largest peak in the final difference electron density synthesis was 0.454 e⁻/Å³ and the largest hole was -0.482 e⁻/Å³ with an RMS deviation of 0.055 e⁻/Å³. On the basis of the final model, the calculated density was 1.752 g/cm³ and F(000), 508 e⁻.

Figure S7. Asymmetric unit of compound 1

Chemical formula	C7H9ClCuN2S	
Formula weight	252.21	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal size	0.02 x 0.05 x 0.23 mm	
Crystal habit	clear yellow prismatic	
Crystal system	monoclinic	
Space group	P21/c	
Unit cell dimensions	<i>a</i> = 8.127(3) Å	α = 90°
	<i>b</i> = 15.76(1) Å	β = 111.816(9)°
	<i>c</i> = 8.041(3) Å	γ = 90°
Volume	956.4(8) ų	
Z	4	
Density (calculated)	1.752 Mg/cm ³	
Absorption coefficient	2.725 mm ⁻¹	
F(000)	508	

Table S2. Data collection and structure refinement for 1.

Theta range for data collection	2.70 to 25.10°	
Index ranges	-9<=h<=9, -18<=k<=18,	-9<=l<=9
Reflections collected	7463	
Independent reflections	1698 [R(int) = 0.0240]	
Coverage of independent reflections	99.9%	
Absorption correction	multi-scan	
Max. and min. transmission	0.9475 and 0.5729	
Structure solution technique	direct methods	
Structure solution program	SHELXS-97 (Sheldrick, 2008)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-97 (Sheldrick, 2	2008)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	1698/0/110	
Goodness-of-fit on F ²	1.000	
Final R indices	1375 data; I>2σ(I)	R ₁ = 0.0264, wR ₂ = 0.0627
	all data	R ₁ = 0.0362, wR ₂ = 0.0674
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0319P) where P=(F_o^2 +2 F_c^2)/3	² +0.5895P]
Largest diff. peak and hole	0.454 and -0.482 eÅ ⁻³	
R.M.S. deviation from mean	0.055 eÅ ⁻³	

b) Single crystal X-ray diffraction supplementary information for 2

A clear orange prismatic-like specimen of $C_{14}H_{18}ClCuN_4S_2$, approximate dimensions 0.14 mm x 0.18 mm x 0.25 mm, was used for the X-ray crystallographic analysis.

Data collection and integration

A total of 5959 frames were collected. The total exposure time was 8.28 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 40400 reflections to a maximum θ angle of 25.35° (0.83 Å resolution), of which 3302 were independent (average redundancy 12.235, completeness = 99.8%, R_{int} = 3.77%, R_{sig} = 1.63%) and 2913 (88.22%) were greater than $2\sigma(F^2)$.

Unit cell

The final cell constants of a = 8.8605(2) Å, b = 9.6615(2) Å, c = 11.7506(2) Å, $\alpha = 66.423(1)^\circ$, $\beta = 82.850(1)^\circ$, $\gamma = 78.316(1)^\circ$, volume = 901.79(3) Å³, are based upon the refinement of the XYZ-centroids of 9981 reflections above 20 $\sigma(I)$ with 4.666° < 20 < 52.28°.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.886. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6918 and 0.8080.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group *P*-1, with Z = 2 for the formula unit, $C_{14}H_{18}ClCuN_4S_2$. The final anisotropic full-matrix least-squares refinement on F² with 201 variables converged at R₁ = 2.72%, for the observed data and wR_2 = 10.89% for all data. The goodness-of-fit was 1.006.

The largest peak in the final difference electron density synthesis was 0.479 e⁻/Å³ and the largest hole was -0.443 e⁻/Å³ with an RMS deviation of 0.150 e⁻/Å³. On the basis of the final model, the calculated density was 1.493 g/cm³ and F(000), 416 e⁻.

Figure S8. Asymmetric unit of compound 2

Table S3. Sample and crystal data for 2.

-

Chemical formula	$C_{14}H_{18}CICuN_4S_2$		
Formula weight	405.43		
Temperature	296(2) K	296(2) К	
Wavelength	0.71073 Å	0.71073 Å	
Crystal size	0.14 x 0.18 x 0.25 mm	0.14 x 0.18 x 0.25 mm	
Crystal habit	clear orange prismatic	clear orange prismatic	
Crystal system	triclinic	triclinic	
Space group	<i>P</i> -1		
Unit cell dimensions	<i>a</i> = 8.8605(2) Å	$\alpha = 66.4230(10)^{\circ}$	
	<i>b</i> = 9.6615(2) Å	$\beta = 82.8500(10)^{\circ}$	
	<i>c</i> = 11.7506(2) Å	γ = 78.3160(10)°	
Volume	901.79(3) Å ³		
Z	2		
Density (calculated)	1.493 Mg/cm ³		
Absorption coefficient	1.591 mm ⁻¹		
F(000)	416		

Table S4. Data collection and structure refinement for 2.

Theta range for data collection	1.89 to 25.35°	
Index ranges	-10<=h<=10, -11<=k<=11, -14<=l<=14	
Reflections collected	40400	
Independent reflections	3302 [R(int) = 0.0377]	
Coverage of independent reflections	99.8%	
Absorption correction	multi-scan	
Max. and min. transmission	0.8080 and 0.6918	
Structure solution technique	direct methods	
Structure solution program	SHELXS-97 (Sheldrick, 2008)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-97 (Sheldrick, 2008)	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	3302 / 0 / 201	
Goodness-of-fit on F ²	1.006	
Final R indices	2913 data; I>2σ(I)	R ₁ = 0.0272, wR ₂ = 0.0886
	all data	R ₁ = 0.0351, wR ₂ = 0.1089
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0783P) ² +0.2906P]	
weighting scheme	where $P=(F_o^2+2F_c^2)/3$	
Largest diff. peak and hole	0.479 and -0.443 eÅ ⁻³	
R.M.S. deviation from mean	0.150 eÅ ⁻³	

c) Single crystal X-ray diffraction supplementary information for 3

A clear yellow prismatic-like specimen of $C_{14}H_{18}BrCuN_4S_2$, approximate dimensions 0.06 mm x 0.12 mm x 0.16 mm, was used for the X-ray crystallographic analysis.

Data collection and integration

A total of 1986 frames were collected. The total exposure time was 16.55 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 31747 reflections to a maximum θ angle of 25.34° (0.83 Å resolution), of which 3319 were independent (average redundancy 9.565, completeness = 100.0%, R_{int} = 4.75%, R_{sig} = 2.69%) and 2638 (79.48%) were greater than $2\sigma(F^2)$.

Unit cell

The final cell constants of a = 21.7441(8) Å, b = 9.8378(5) Å, c = 16.9298(8) Å, $\beta = 90.766(2)^{\circ}$, volume = 3621.2(3) Å³, are based upon the refinement of the XYZ-centroids of 7271 reflections above 20 σ (I) with 4.544° < 20 < 50.84°.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.910. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.5932 and 0.8110.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group C2/c, with Z = 8 for the formula unit, $C_{14}H_{18}BrCuN_4S_2$. The final anisotropic full-matrix least-squares refinement on F² with 201 variables converged at R₁ = 2.51%, for the observed data and wR_2 = 8.86% for all data. The goodness-of-fit was 1.000.

The largest peak in the final difference electron density synthesis was 0.401 e⁻/Å³ and the largest hole was -0.316 e⁻/Å³ with an RMS deviation of 0.097 e⁻/Å³. On the basis of the final model, the calculated density was 1.650 g/cm³ and F(000), 1808 e⁻.

Figure S9. Asymmetric unit of compound 3

Table S5. Sample and crystal data for 3.

_

Chemical formula	$C_{14}H_{18}BrCuN_4S_2$	
Formula weight	449.89	
Temperature	296(2) К	
Wavelength	0.71073 Å	
Crystal size	0.06 x 0.12 x 0.16 mm	
Crystal habit	clear yellow prismatic	
Crystal system	monoclinic	
Space group	C2/c	
Unit cell dimensions	<i>a</i> = 21.7441(8) Å	α = 90°
	<i>b</i> = 9.8378(5) Å	$\beta = 90.766(2)^{\circ}$
	<i>c</i> = 16.9298(8) Å	γ = 90°
Volume	3621.2(3) Å ³	
Z	8	
Density (calculated)	1.650 Mg/cm ³	
Absorption coefficient	3.644 mm ⁻¹	
F(000)	1808	

Table S.6 Data collection and structure refinement for 3.

Theta range for data collection	1.87 to 25.34°	
Index ranges	-26<=h<=26, -11<=k<=11, -20<=l<=20	
Reflections collected	31747	
Independent reflections	3319 [R(int) = 0.0475]	
Coverage of independent reflections	100.0%	
Absorption correction	multi-scan	
Max. and min. transmission	0.8110 and 0.5932	
Structure solution technique	direct methods	
Structure solution program	SHELXS-97 (Sheldrick, 2008)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-97 (Sheldrick, 2008)	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	3319 / 0 / 201	
Goodness-of-fit on F ²	1.000	
Final R indices	2638 data; I>2σ(I)	R ₁ = 0.0251, wR ₂ = 0.0691
	all data	R ₁ = 0.0415, wR ₂ = 0.0886
Waighting schome	$w=1/[\sigma^2(F_o^2)+(0.0595P)^2+0.0000P]$	
weighting scheme	where $P=(F_o^2+2F_c^2)/3$	
Largest diff. peak and hole	0.401 and -0.316 eÅ ⁻³	
R.M.S. deviation from mean	0.097 eÅ⁻³	

d) Single crystal X-ray diffraction supplementary information for 4

A clear orange prismatic-like specimen of $C_{28}H_{36}Cu_2I_2N_8S_4$, approximate dimensions 0.08 mm x 0.17 mm x 0.19 mm, was used for the X-ray crystallographic analysis.

Data collection and integration

A total of 1949 frames were collected. The total exposure time was 8.12 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 32680 reflections to a maximum θ angle of 25.35° (0.83 Å resolution), of which 3364 were independent (average redundancy 9.715, completeness = 99.6%, R_{int} = 3.60%, R_{sig} = 2.01%) and 3092 (91.91%) were greater than $2\sigma(F^2)$.

Unit cell

The final cell constants of a = 21.910(3) Å, b = 9.944(2) Å, c = 16.891(3) Å, $\beta = 90.414(7)^{\circ}$, volume = 3680.1(9) Å³, are based upon the refinement of the XYZ-centroids of 9985 reflections above 20 σ (I) with 4.498° < 20 < 56.52°.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.767. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.5911 and 0.7900.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group C2/c, with Z = 4 for the formula unit, $C_{28}H_{36}Cu_{2}l_2N_8S_4$. The final anisotropic full-matrix least-squares refinement on F² with 201 variables converged at R₁ = 1.84%, for the observed data and wR_2 = 7.03% for all data. The goodness-of-fit was 1.001.

The largest peak in the final difference electron density synthesis was 0.645 e⁻/Å³ and the largest hole was -0.783 e⁻/Å³ with an RMS deviation of 0.143 e⁻/Å³. On the basis of the final model, the calculated density was 1.794 g/cm³ and F(000), 1952 e⁻.

Figure S10. Asymmetric unit of compound 4

Table S7. Sample and crystal data for 4.

-

Chemical formula	$C_{28}H_{36}Cu_2I_2N_8S_4$		
Formula weight	993.77		
Temperature	100(2) K	100(2) K	
Wavelength	0.71073 Å		
Crystal size	0.08 x 0.17 x 0.19 mm		
Crystal habit	clear orange prismatic		
Crystal system	monoclinic	monoclinic	
Space group	C2/c		
Unit cell dimensions	<i>a</i> = 21.910(3) Å	α = 90°	
	<i>b</i> = 9.944(2) Å	$\beta = 90.414(7)^{\circ}$	
	<i>c</i> = 16.891(3) Å	γ = 90°	
Volume	3680.1(9) Å ³		
Z	4		
Density (calculated)	1.794 Mg/cm ³		
Absorption coefficient	3.092 mm ⁻¹		
F(000)	1952		

Table S8. Data collection and structure refinement for 4.

Theta range for data collection	1.86 to 25.35°	
Index ranges	-26<=h<=26, -11<=k<=11, -19<=l<=20	
Reflections collected	32680	
Independent reflections	3364 [R(int) = 0.0360]	
Coverage of independent reflections	99.6%	
Absorption correction	multi-scan	
Max. and min. transmission	0.7900 and 0.5911	
Structure solution technique	direct methods	
Structure solution program	SHELXS-97 (Sheldrick, 2008)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-97 (Sheldrick, 2008)	
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$	
Data / restraints / parameters	3364 / 0 / 201	
Goodness-of-fit on F ²	1.001	
Final R indices	3092 data; I>2σ(I)	R ₁ = 0.0184, wR ₂ = 0.0582
	all data	R ₁ = 0.0224, wR ₂ = 0.0703
Waighting schome	$w=1/[\sigma^2(F_0^2)+(0.0553P)^2+1.3229P]$	
weighting scheme	where $P = (F_o^2 + 2F_c^2)/3$	
Largest diff. peak and hole	0.645 and -0.783 eÅ ⁻³	
R.M.S. deviation from mean	0.143 eÅ ⁻³	

e) Single crystal X-ray diffraction supplementary information for 5

A clear yellow prismatic-like specimen of C₄H₇ClCuN₂S, approximate dimensions 0.08 mm x 0.10 mm x 0.19 mm, was used for the X-ray crystallographic analysis.

Data collection and integration

A total of 1985 frames were collected. The total exposure time was 16.54 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 11822 reflections to a maximum θ angle of 25.35° (0.83 Å resolution), of which 1378 were independent (average redundancy 8.579, completeness = 100.0%, R_{int} = 2.41%, R_{sig} = 1.16%) and 1317 (95.57%) were greater than $2\sigma(F^2)$.

Unit cell

The final cell constants of <u>a</u> = 7.9771(1) Å, <u>b</u> = 10.6730(1) Å, <u>c</u> = 8.9210(1) Å, β = 97.182(1)°, volume = 753.57(2) Å³, are based upon the refinement of the XYZ-centroids of 8366 reflections above 20 σ (I) with 5.979° < 20 < 56.75°.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.810. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.5610 and 0.7704.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group $P2_1/n$, with Z = 4 for the formula unit, C₄H₇ClCuN₂S. The final anisotropic full-matrix least-squares refinement on F² with 83 variables converged at R₁ = 1.87%, for the observed data and wR_2 = 5.27% for all data. The goodness-of-fit was 1.000.

The largest peak in the final difference electron density synthesis was 0.333 e⁻/Å³ and the largest hole was -0.567 e⁻/Å³ with an RMS deviation of 0.056 e⁻/Å³. On the basis of the final model, the calculated density was 1.888 g/cm³ and F(000), 428 e⁻.

Figure S11. Asymmetric unit of compound 5

Table S9. Sample and crystal data for 5.

_

Chemical formula	C ₄ H ₇ ClCuN ₂ S	
Formula weight	214.17	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal size	0.08 x 0.10 x 0.19 mm	
Crystal habit	clear yellow prismatic	
Crystal system	monoclinic	
Space group	P21/n	
Unit cell dimensions	<i>a</i> = 7.9771(1) Å	α = 90°
	<i>b</i> = 10.6730(1) Å	β = 97.182(1)°
	<i>c</i> = 8.9210(1) Å	γ = 90°
Volume	753.57(2) Å ³	
Z	4	
Density (calculated)	1.888 Mg/cm ³	
Absorption coefficient	3.439 mm ⁻¹	
F(000)	428	

Table S10. Data collection and structure refinement for 5.

Theta range for data collection	2.99 to 25.35°	
Index ranges	-9<=h<=9, -12<=k<=12, -10<=l<=10	
Reflections collected	11822	
Independent reflections	1378 [R(int) = 0.0241]	
Coverage of independent reflections	100.0%	
Absorption correction	multi-scan	
Max. and min. transmission	0.7704 and 0.5610	
Structure solution technique	direct methods	
Structure solution program	SHELXS-97 (Sheldrick, 2008)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-97 (Sheldrick, 2008)	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	1378 / 0 / 83	
Goodness-of-fit on F ²	1.000	
Final R indices	1317 data; I>2σ(I)	R ₁ = 0.0187, <i>w</i> R ₂ = 0.0520
	all data	R ₁ = 0.0197, <i>w</i> R ₂ = 0.0527
Waighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0311P) ² +0.4035P]	
weighting scheme	where $P=(F_o^2+2F_c^2)/3$	
Largest diff. peak and hole	0.333 and -0.567 eÅ ⁻³	
R.M.S. deviation from mean	0.056 eÅ⁻³	

f) Single crystal X-ray diffraction supplementary information for 6

A clear colourless prismatic-like specimen of $C_4H_{10}CuIN_2S_2$, approximate dimensions 0.08 mm x 0.17 mm x 0.18 mm, was used for the X-ray crystallographic analysis.

Data collection and integration

A total of 4017 frames were collected. The total exposure time was 11.16 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 16592 reflections to a maximum θ angle of 25.34° (0.83 Å resolution), of which 1872 were independent (average redundancy 8.863, completeness = 100.0%, R_{int} = 2.17%, R_{sig} = 1.13%) and 1747 (93.32%) were greater than $2\sigma(F^2)$.

Unit cell

The final cell constants of a = 7.4292(2) Å, b = 8.0762(2) Å, c = 9.6140(2) Å, $\alpha = 107.059(1)^\circ$, $\beta = 90.971(1)^\circ$, $\gamma = 110.972(1)^\circ$, volume = 510.10(2) Å³, are based upon the refinement of the XYZ-centroids of 9474 reflections above 20 $\sigma(I)$ with 5.703° < 20 < 56.50°.

Scaling

Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.814. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.4368 and 0.6667.

Structure solution and refinement

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group *P*-1, with Z = 2 for the formula unit, C₄H₁₀CuIN₂S₂. The final anisotropic full-matrix least-squares refinement on F² with 93 variables converged at R₁ = 1.99%, for the observed data and wR_2 = 5.16% for all data. The goodness-of-fit was 1.004.

The largest peak in the final difference electron density synthesis was 0.513 e⁻/Å³ and the largest hole was -0.479 e⁻/Å³ with an RMS deviation of 0.073 e⁻/Å³. On the basis of the final model, the calculated density was 2.218 g/cm³ and F(000), 324 e⁻.

Figure S12. Asymmetric unit of compound 6

Table S11. Sample and crystal data for 6.

_

Chemical formula	$C_4H_{10}CuIN_2S_2$		
Formula weight	340.70		
Temperature	296(2) K	296(2) К	
Wavelength	0.71073 Å	0.71073 Å	
Crystal size	0.08 x 0.17 x 0.18 mm		
Crystal habit	clear colourless prismatic		
Crystal system	triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 7.4292(2) Å	$\alpha = 107.059(1)^{\circ}$	
	<i>b</i> = 8.0762(2) Å	$\beta = 90.971(1)^{\circ}$	
	<i>c</i> = 9.6140(2) Å	γ = 110.972(1)°	
Volume	510.10(2) Å ³		
Z	2		
Density (calculated)	2.218 Mg/cm ³		
Absorption coefficient	5.515 mm ⁻¹		
F(000)	324		

Table S12. Data collection and structure refinement for 6.

Theta range for data collection	2.24 to 25.34°	
Index ranges	-8<=h<=8, -9<=k<=9, -11<=l<=11	
Reflections collected	16592	
Independent reflections	1872 [R(int) = 0.0217]	
Coverage of independent reflections	100.0%	
Absorption correction	multi-scan	
Max. and min. transmission	0.6667 and 0.4368	
Structure solution technique	direct methods	
Structure solution program	SHELXS-97 (Sheldrick, 2008)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-97 (Sheldrick, 2008)	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	1872 / 0 / 93	
Goodness-of-fit on F ²	1.004	
Final R indices	1747 data; I>2σ(I)	R ₁ = 0.0199, wR ₂ = 0.0503
	all data	$R_1 = 0.0221$, $wR_2 = 0.0516$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0238P) ² +0.8331P]	
weighting scheme	where $P=(F_o^2+2F_c^2)/3$	
Largest diff. peak and hole	0.513 and -0.479 eÅ ⁻³	
R.M.S. deviation from mean	0.073 eÅ⁻³	

Figure S13. Intra- (in blue) and interlayer (in red) hydrogen bonds in 1.

Figure S14. Intra- (in blue) and intermolecular (in red) hydrogen bonds in 2.

Figure S15. Intra- (in blue) and intermolecular (in red) hydrogen bonds in 3.

Figure S16. Intra- (in blue) and intermolecular (in red) hydrogen bonds in 4.

Figure S17. Intra- (in blue) and interchain (in red) hydrogen bonds in 5.

Figure S18. Intra- (in blue) and intermolecular (in red) hydrogen bonds in 6.

	D-H	d(D-H)/ Å	d(H…A)/ Å	<dha th="" °<=""><th>d(D…A)/ Å</th><th>Α</th></dha>	d(D…A)/ Å	Α
1	N1-H1A	0.860	2.428	155.88	3.232	Cl1 [-x+1, -y+2, -z]
	N1-H1B	0.860	2.379	175.05	3.237	Cl1
2	N1-H1NA	0.860	2.109	177.82	2.968	N4 [-x+1, -y+1, -z+1]
	N1-H1NB	0.860	2.589	152.02	3.373	Cl1
	N2-H2NA	0.860	2.412	167.18	3.257	Cl1
	N2-H2NB	0.860	2.570	147.00	3.325	Cl1 [-x+2, -y+1, -z+1]
3	N3-H3A	0.860	2.725	158.25	3.538	Br1 [-x+3/2, y-1/2, -z+3/2]
	N3-H3B	0.860	2.752	153.14	3.540	Br1
	N4-H4A	0.860	2.107	174.58	2.964	N2 [-x+3/2, y-1/2, -z+3/2]
	N4-H4B	0.860	2.645	157.71	3.457	Br1
4	N1-H1A	0.880	2.795	155.98	3.617	I1 [-x+1/2, γ+1/2, -z+3/2]
	N1-H1B	0.880	2.826	150.78	3.620	11
	N2-H2D	0.880	2.059	170.48	2.930	N4 [-x+1/2, y+1/2, -z+1/2]
	N2-H2E	0.880	2.826	149.72	3.613	11
5	N1-H1N	0.860	2.350	177.24	3.210	Cl1 [x+1/2, -y+1/2, z+1/2]
	N1-H2N	0.860	2.320	168.66	3.167	Cl1
6	N1-H1N	0.860	2.981	156.77	3.787	I1 [-x, -y+1, -z+1]
	N1-H2N	0.860	2.985	150.11	3.755	11

Table S13. Hydrogen bonds in compounds 1-6.

Figure S19. Emission spectra of 6 (blue) and thioacetamide (black) in the solid state at 359 nm.

Figure S20. Intensity versus voltage corresponding to one crystal of compound 1, obtained using two contact method, with graphite paint at 300 K.