Supporting Information

Structural and insights into the coordination chemistry and reactivity of a 3,3'-*bis*-imine-2,2'-bipyridine ligand

Roger Gumbau-Brisa,^a John J. Hayward,^a John D. Wallis,^b Jeremy M. Rawson^c and Melanie Pilkington*^a

- ^a Department of Chemistry, 1812 Sir Isaac Brock Way, 500 Glenridge Avenue, St Catharines, ON, L2S 3A1, Canada. Tel: +1 (905) 688 5550 ext. 3403 E-mail: mpilkington@brocku.ca
- ^b School of Science and Technology Nottingham Trent University Clifton Lane Nottingham UK. NG11 8NS.
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.

Contents

S-1 Synthesis	.2
S-2 Tables of Bond Lengths and Angles	.3
Ligand L8 - Selected geometric parameters (Å, ♀)	.3
Complex 1 - Selected geometric parameters (Å, º)	.4
Complex 2 – Selected geometric parameters (Å, ♀)	.5
Complex 3 – Selected geometric parameters (Å, ♀)	.8
Complex 4 – Selected geometric parameters (Å, º)	.9
Complex 5 - Selected geometric parameters (Å, º)	11
S3- Magnetic studies	14
S4 - Complex 5 – UV-Vis Spectrum in MeOH	15
S5 - References	17

S-1 Synthesis

N3,N3'-di-2-hydroxybenzylidene-[2,2']bipyridinyl-3,3'-diamine (L8)¹

Salicylaldehyde (5.81 g, 47 mmol) was added dropwise to a solution of 3,3'-diamino-2,2'-bipyridine L1 (4.04 g, 21 mmol) in MeOH (160 mL). The resulting yellow mixture was stirred overnight at room temperature, after which time a yellow solid was isolated by filtration. The precipitate was washed with MeOH (3×20 mL) and Et₂O (3×20 mL) and dried in air. An additional crop of the ligand was obtained by evaporating the filtrate to dryness, affording an additional 2.43 g of the ligand. Combined yield: 7.54 g (88 %). Single crystals suitable for X-ray diffraction were obtained via the slow evaporation of a saturated DCM solution, m.p. 213 °C (Lit. 207.5 – 208.5°C)^{1b}; ¹H NMR (600 MHz, CDCl₃): δ_H = 12.11 (2H, s, OH), 8.67 (2H, dd, J = 4.7, 1.5 Hz, o-py, H1 & H10), 8.45 (2H, s, HC=N, H11 & H18), 7.57 (2H, dd, J = 8.2, 1.5 Hz, p-py, H3 & H8), 7.41 (2H, dd, J = 8.2, 4.7 Hz, m-py, H2 & H9), 7.26 (2H, ddd, J = 8.5, 7.1, 1.6 Hz, H15 & H22), 7.05 (2H, dd, J = 7.7, 1.6 Hz, H17 & H24), 6.82 (2H, dd, J = 8.5, 1.1 Hz, H14 & H21), 6.76 (2H, ddd, J = 7.7, 7.1, 1.1 Hz, H16 & H23); ¹³C NMR (150 MHz, CDCl₃): $\delta_c = 164.7$ (C11 & C18), 160.7 (C13 & C20), 151.7 (C5 & C6), 148.1 (C1 & C10), 143.4 (C4 & C7), 133.7 (C15 & C22), 132.6 (C17 & C24), 126.0 (C3 & C8), 124.6 (C2 & C9), 119.2 (C12 & C19), 119.0 (C14 & C21), 117.1 (C16 & C23); FT-IR (KBr, cm⁻¹): $\tilde{\nu}$ = 3448, 3055, 1612, 1567, 1492, 1419, 1398, 1365, 1278, 1145, 908, 761; UV/Vis (MeCN, nm; $\epsilon/M^{-1} \cdot cm^{-1}$ $\lambda_{max} = 279$ (30800), 346 (19510); MS (FAB) m/z = 395 ([M+H]⁺, 100%), 394 ([M]⁺, 35%); Elemental analysis: calc for C₂₂H₁₆N₄O₂: C 72.50%, H 4.43%, N 23.07%; found C 71.97%, H 4.43%, N 23.43%.

S-2 Tables of Bond Lengths and Angles

0	0 1		
Bond	Length (Å)	Bond	Length (Å)
N1-C1	1.334 (2)	C8—C9	1.380 (2)
N1-C5	1.347 (2)	C9—C10	1.387 (2)
N2-C10	1.340 (2)	C11—C12	1.448 (2)
N2—C6	1.346 (2)	C12—C17	1.402 (2)
N3-C11	1.291 (2)	C12—C13	1.415 (2)
N3—C4	1.418 (2)	C13—C14	1.399 (2)
N4-C18	1.287 (2)	C14—C15	1.383 (3)
N4—C7	1.420 (2)	C15—C16	1.389 (3)
01—C13	1.355 (2)	C16—C17	1.384 (2)
O2—C20	1.355 (2)	C18—C19	1.448 (2)
C1—C2	1.391 (3)	C19—C24	1.401 (2)
C2—C3	1.378 (3)	C19—C20	1.414 (3)
C3—C4	1.401 (2)	C20-C21	1.396 (3)
C4—C5	1.403 (2)	C21—C22	1.385 (3)
C5—C6	1.498 (2)	C22—C23	1.387 (3)
C6—C7	1.397 (2)	C23—C24	1.380 (2)
С7—С8	1.396 (2)		

Ligand L8 - Selecte	d geometric p	arameters (Å, º)

Bond	Angle (°)	Bond	Angle (°)
C1-N1-C5	117.29 (15)	C17—C12—C13	118.58 (16)
C10-N2-C6	116.86 (15)	C17—C12—C11	119.18 (16)
C11—N3—C4	120.65 (15)	C13-C12-C11	122.23 (16)
C18—N4—C7	122.37 (15)	01-C13-C14	118.84 (16)
C13-01-H1A	109.5	O1-C13-C12	121.81 (15)
C20—O2—H2A	109.5	C14-C13-C12	119.34 (16)
N1-C1-C2	123.49 (16)	C15-C14-C13	120.27 (17)
N1-C1-H1	118.3	C15-C14-H14	119.9
C2-C1-H1	118.3	C13-C14-H14	119.9
C3-C2-C1	119.07 (17)	C14—C15—C16	121.28 (17)
C3—C2—H2	120.5	C14—C15—H15	119.4
C1-C2-H2	120.5	C16-C15-H15	119.4
C2-C3-C4	119.01 (16)	C17—C16—C15	118.70 (16)
C2—C3—H3	120.5	C17—C16—H16	120.6
C4—C3—H3	120.5	C15-C16-H16	120.6
C3—C4—C5	117.57 (16)	C16-C17-C12	121.77 (17)
C3-C4-N3	125.76 (15)	C16—C17—H17	119.1
C5-C4-N3	116.63 (15)	C12—C17—H17	119.1
N1-C5-C4	123.52 (16)	N4-C18-C19	120.80 (16)
N1-C5-C6	115.51 (15)	N4-C18-H18	119.6
C4—C5—C6	120.96 (15)	C19—C18—H18	119.6
N2—C6—C7	123.68 (16)	C24—C19—C20	118.94 (16)

N2-C6-C5	115.91 (15)	C24—C19—C18	119.34 (16)
C7—C6—C5	120.39 (14)	C20-C19-C18	121.70 (16)
C8—C7—C6	117.93 (15)	O2-C20-C21	118.87 (17)
C8-C7-N4	125.71 (15)	O2-C20-C19	121.73 (16)
C6-C7-N4	116.29 (15)	C21-C20-C19	119.40 (17)
C9—C8—C7	118.88 (17)	C22-C21-C20	120.06 (18)
C9—C8—H8	120.6	C22—C21—H21	120.0
C7—C8—H8	120.6	C20-C21-H21	120.0
C8-C9-C10	118.95 (17)	C21-C22-C23	121.10 (17)
C8—C9—H9	120.5	C21—C22—H22	119.4
C10-C9-H9	120.5	C23—C22—H22	119.4
N2-C10-C9	123.69 (16)	C24—C23—C22	119.26 (18)
N2-C10-H10	118.2	C24—C23—H23	120.4
C9-C10-H10	118.2	C22-C23-H23	120.4
N3-C11-C12	121.95 (16)	C23-C24-C19	121.23 (18)
N3-C11-H11	119.0	C23—C24—H24	119.4
C12-C11-H11	119.0	C19—C24—H24	119.4

Complex 1 - Selected geometric parameters (Å, º)

Bond	Length (Å)	Bond	Length (Å)
Sn1—N2	2.191 (4)	C2—C3	1.354 (8)
Sn1—N1	2.205 (4)	C3—C4	1.416 (8)
Sn1—Cl1	2.3720 (16)	C4—C5	1.421 (7)
Sn1—Cl4	2.3771 (15)	C5—C6	1.479 (7)
Sn1—Cl2	2.4020 (14)	C6—C7	1.416 (7)
Sn1—Cl3	2.4316 (14)	C7—C8	1.409 (8)
O1-C13	1.360 (7)	C8—C9	1.355 (8)
O2—C18	1.421 (8)	C9—C10	1.382 (8)
O3—C20A	1.416 (5)	C11—C12	1.515 (7)
O3—C20B	1.422 (5)	C12—C13	1.391 (8)
N1—C1	1.324 (7)	C12—C17	1.401 (8)
N1—C5	1.372 (7)	C13—C14	1.403 (8)
N2—C10	1.335 (7)	C14—C15	1.363 (9)
N2—C6	1.373 (6)	C15-C16	1.384 (10)
N3—C4	1.364 (7)	C16—C17	1.380 (8)
N3—C11	1.435 (7)	C18—C19	1.501 (11)
N4—C7	1.373 (7)	C20A-C21	1.497 (5)
N4—C11	1.450 (7)	C20B-C21	1.499 (5)
C1—C2	1.392 (8)		
Bond	Angle (°)	Bond	Angle (°)
N2-Sn1-N1	74.02 (17)	N1-C5-C4	117.2 (5)
N2-Sn1-Cl1	168.55 (12)	N1-C5-C6	114.7 (4)
N1—Sn1—Cl1	94.99 (12)	C4-C5-C6	128.0 (5)

N2—Sn1—Cl4	95.61 (12)	N2-C6-C7	117.7 (5)
N1—Sn1—Cl4	169.47 (12)	N2-C6-C5	115.5 (4)
Cl1—Sn1—Cl4	95.46 (6)	C7—C6—C5	126.6 (5)
N2-Sn1-Cl2	88.11 (12)	N4-C7-C8	118.6 (5)
N1—Sn1—Cl2	86.01 (12)	N4—C7—C6	123.5 (5)
Cl1—Sn1—Cl2	94.44 (6)	C8—C7—C6	117.8 (5)
Cl4—Sn1—Cl2	91.87 (5)	C9—C8—C7	122.0 (5)
N2-Sn1-Cl3	85.28 (12)	C8-C9-C10	118.3 (5)
N1-Sn1-Cl3	89.76 (12)	N2-C10-C9	121.2 (5)
Cl1—Sn1—Cl3	91.56 (6)	N3-C11-N4	111.1 (4)
Cl4—Sn1—Cl3	91.27 (5)	N3-C11-C12	111.0 (4)
Cl2—Sn1—Cl3	172.93 (5)	N4-C11-C12	108.7 (4)
C20A-03-C20B	50.3 (10)	C13-C12-C17	119.3 (5)
C1-N1-C5	123.5 (5)	C13-C12-C11	119.5 (5)
C1-N1-Sn1	119.4 (4)	C17—C12—C11	121.1 (5)
C5-N1-Sn1	116.7 (3)	O1-C13-C12	117.7 (5)
C10-N2-C6	122.7 (5)	O1-C13-C14	122.4 (5)
C10-N2-Sn1	119.9 (3)	C12-C13-C14	119.8 (5)
C6-N2-Sn1	117.3 (3)	C15—C14—C13	119.5 (6)
C4-N3-C11	122.4 (4)	C14—C15—C16	121.5 (6)
C7—N4—C11	118.7 (4)	C17—C16—C15	119.4 (6)
N1-C1-C2	121.1 (5)	C16—C17—C12	120.4 (6)
C3-C2-C1	118.2 (5)	O2-C18-C19	107.0 (6)
C2-C3-C4	121.7 (5)	O3-C20A-C21	111.9 (10)
N3-C4-C3	116.7 (5)	O3-C20B-C21	111.5 (10)
N3-C4-C5	125.1 (5)	C20A-C21-C20B	47.4 (10)
C3—C4—C5	118.2 (5)		

Complex 2 – Selected geometric parameters (Å, º)

Bond	Length (Å)	Bond	Length (Å)
Cu1 -O2	1.946(2)	N2 -C10	1.328(3)
Cu1 -O3	1.9142(18)	N3 -C11	1.452(3)
Cu1 -N1	1.964(2)	N3 -C4	1.370(3)
Cu1 -N2	1.977(2)	N4 -C7	1.372(3)
Cu1 -O3_c	2.4949(19)	N4 -C11	1.451(3)
Cl2 -08	1.459(4)	C1-C2	1.390(4)
Cl2 -O9	1.396(4)	C2 -C3	1.361(4)
Cl2 -010	1.402(5)	C3 -C4	1.409(4)
Cl2 -011	1.430(4)	N3 -H31	0.849(6)
Cl2 -O30	0.876(5)	C4 -C5	1.407(3)
Cl2 -C30	0.891(9)	N4 -H41	0.85(2)
Cl2 -H30	1.3200	C5 -C6	1.479(3)
Cl2-H30A	1.3000	C6 -C7	1.408(4)
Cl2-H30B	1.3600	C7 -C8	1.411(4)
Cl1 -05	1.498(4)	08 -08_b	1.275(5)

Cl1 -07	1.441(4)	C8 -C9	1.371(4)
Cl1 -O5_a	1.498(4)	O9 -C30	0.884(10)
Cl1 -07_a	1.441(4)	C9 -C10	1.388(4)
Cl1 -04	1.429(3)	010 -030	0.924(8)
`Cl1 -06	1.361(5)	O10 -C30	1.457(10)
Cl1-O6_a	1.361(5)	011-030	1.433(7)
O1 -C17	1.374(3)	C11 -C12	1.514(4)
O2 -C24	1.245(3)	C12 -C13	1.387(4)
O3 -C18	1.315(3)	C12 -C17	1.393(4)
N1 -C5	1.367(3)	C13 -C14	1.382(4)
N1 -C1	1.330(3)	C14 -C15	1.384(4)
O1 -H111	0.8400	C15-C16	1.383(4)
N2 -C6	1.368(3)	C16 -C17	1.389(4)
C18-C19	1.404(4)	C18-C23	1.417(4)
C19-C20	1.371(4)	C20 -C21	1.401(4)
C21 -C22	1.360(4)	C22-C23	1.422(4)
 C23 -C24	1.418(4)	O30 -C30	1.447(10)

Bond	Angle (°)	Bond	Angle (°)
04 -Cl1-O6	112.4(3)	C4-N3-H31	112(2)
06 -Cl1-07	49.3(3)	C7-N4-H41	115.7(18)
05_a -Cl1 -O6	111.4(3)	C11-N4-H41	115.4(17)
O4-Cl1-O6_a	112.4(3)	C3-C4 -C5	118.0(2)
O6_a-Cl1-O7_a	49.3(3)	N3-C4-C5	123.5(2)
07-Cl1-07_a	138.0(3)	N3-C4-C3	118.4(2)
04-Cl1-07	111.02(18)	C4-C5-C6	127.2(2)
05_a -Cl1-07	64.2(2)	N1-C5-C4	119.2(2)
06_a-Cl1-07	112.2(3)	N1-C5-C6	113.4(2)
O4-Cl1-O5_a	104.67(18)	C5-C6-C7	128.4(2)
O5_a-Cl1-O7_a	104.7(2)	N2-C6-C5	112.7(2)
Cu1-O2-C24	125.65(18)	N2-C6 -C7	118.9(2)
Cu1_c -O3-C18	104.24(15)	C6-C7-C8	118.1(2)
Cu1-O3-Cu1_c	99.10(8)	N4 -C7-C6	125.2(2)
Cu1-O3-C18	126.01(17)	N4-C7-C8	116.8(2)
Cu1-N1-C5	116.26(16)	Cl2-O8-O8_b	146.5(4)
C1-N1-C5	121.6(2)	C7-C8 -C9	120.7(3)
C17-O1-H111	109.00	Cl2-O9-C30	38.3(6)
Cu1-N1-C1	122.18(18)	C8-C9-C10	118.9(2)
C6 -N2-C10	122.2(2)	N2-C10-C9	121.1(2)
Cu1-N2-C10	121.68(17)	O30-O10-C30	70.9(5)
Cu1-N2-C6	116.02(16)	Cl2-O10-O30	37.6(4)
C4-N3-C11	120.4(2)	Cl2-O10-C30	36.3(4)
C7-N4-C11	122.7(2)	N4-C11-C12	109.7(2)
N1-C1-C2	121.5(3)	N3-C11-N4	110.3(2)
C1-C2-C3	118.7(3)	Cl2-O11-O30	35.6(2)
C11-N3-H31	117(2)	N3-C11-C12	109.4(2)
C2-C3-C4	121.0(2)	C11-C12-C17	120.8(2)

C13-C12-C17	118.1(2)	C3-C2-H2	121.00
C11-C12-C13	121.0(2)	C1-C2-H2	121.00
C12-C13-C14	121.8(3)	C2-C3-H3	120.00
C13-C14-C15	119.5(3)	C4-C3-H3	119.00
C14-C15-C16	119.8(3)	C9 -C8-H8	120.00
C15-C16-C17	120.4(3)	O8_b-O8-H30	94.00
O1-C17-C12	117.8(2)	 Cl2-O8-H30	57.00
O1-C17-C16	121.8(2)	C7-C8-H8	120.00
C12-C17-C16	120.5(3)	H30A-O9-H30B	131.00
03 - C18 - C23	122.9(2)	CI2-09-H30B	65.00
C19-C18-C23	118,1(2)	C8-C9-H9	121.00
03-018-010	110.1(2)	C30_O9_H30B	58.00
C18 C10 C20	119.0(2)		58.00
	120.6(3)	CI2-09-H30A	68.00
C19-C20-C21	121.8(2)	С10-С9-Н9	121.00
C20-C21-C22	118.9(3)	C30-O9-H30A	78.00
C21-C22-C23	121.0(3)	C9-C10-H10	119.00
C18-C23-C22	119.6(2)	N2-C10-H10	119.00
C18 -C23 -C24	22.4(2)	N4-C11-H11	109.00
C22-C23-C24	118.0(2)	C12 -C11-H11	109.00
O2 -C24 -C23	127.0(3)	N3-C11-H11	109.00
010 -030 -011	149.5(5)	C12-C13-H13	119.00
Cl2-O30 -C30	35.4(4)	C14 -C13-H13	119.00
011-030 -C30	90.0(5)	C15-C14-H14	120.00
Cl2-O30 -O11	72.0(4)	C13-C14-H14	120.00
Cl2-O30 -O10	102.3(6)	C14-C15-H15	120.00
O10-O30 -C30	72.0(5)	C16-C15-H15	120.00
C2-C1-H1	119.00	C17-C16-H16	120.00
N1-C1-H1	119.00	C15-C16-H16	120.00
C20 -C19-H19	120.00	O5_a-O7-O6	118.8(4)
C18-C19-H19	120.00	O9 -C30-O30	137.1(9)
C21-C20-H20	119.00	Cl2-C30-O9	103.7(9)
C19-C20-H20	119.00	Cl2-C30-O10	68.5(6)
C20-C21-H21	121.00	Cl2-C30-O30	34.7(4)
C22-C21-H21	121.00	O9-C30-O10	169.6(10)
C21-C22-H22	119.00	O10 -C30-O30	37.1(4)
C23-C22-H22	120.00	H30B-C30-H30C	109.00
C23-C24-H24	117.00	Cl2-C30-H30A	88.00
O2-C24-H24	116.00	Cl2-C30-H30B	93.00
O10-O30-H30	112.00	Cl2-C30-H30C	144.00
C30 -O30-H30	122.00	O9 -C30-H30A	40.00
Cl2-O30 -H30	94.00	O9-C30 -H30B	73.00
O11-O30-H30	98.00	O9-C30-H30C	110.00
Cl1-05-07_a	56.1(2)	O10-C30-H30A	143.00
Cl1-05 -06	56.8(3)	O10-C30-H30B	100.00
06-05-07_a	105.7(4)	O10-C30-H30C	80.00
05-06 -07	134.4(5)	O30-C30 -H30A	110.00
Cl1-06 -07	68.9(4)	O30-C30-H30B	109.00
Cl1-06 -05	67.1(3)	O30-C30-H30C	109.00

Symmetry code(s):

a =[3566.00] = [3_566] =x,3/2-y,3/2-z b =[2565.00] = [2_565] =1/2-x,1-y,z c =[5567.00] = [5_567] =-x,1-y,2-z

Complex 3 – Selected geometric parameters (Å, º)

Bond	Length (Å)	Bond	Length (Å)
Mn1-N1	2.1999 (16)	C1—C2	1.390 (3)
Mn1—N2	2.2177 (15)	C2—C3	1.371 (3)
Mn1-03	2.3427 (14)	C3—C4	1.402 (2)
Mn1—Cl3	2.5218 (5)	C4—C5	1.410 (2)
Mn1—Cl2	2.5343 (6)	C5—C6	1.499 (2)
Mn1—Cl3 ⁱ	2.5359 (5)	C6—C7	1.419 (2)
Cl3—Mn1 ⁱ	2.5359 (5)	С7—С8	1.409 (3)
02—C13	1.368 (2)	C8—C9	1.367 (3)
O3-C101	1.424 (3)	C9—C10	1.391 (3)
O3—C201	1.442 (5)	C11—C12	1.508 (3)
N1-C1	1.333 (2)	C12—C17	1.392 (3)
N1-C5	1.366 (2)	C12—C13	1.394 (3)
N2-C10	1.326 (2)	C13—C14	1.390 (3)
N2—C6	1.364 (2)	C14—C15	1.379 (3)
N3—C4	1.374 (2)	C15—C16	1.387 (3)
N3-C11	1.454 (2)	C16—C17	1.384 (3)
N4—C7	1.372 (2)	C101—C102	1.507 (3)
N4—C11	1.446 (2)	C201—C202	1.515 (5)

Bond	Angle (°)	Bond	Angle (°)
N1-Mn1-N2	72.11 (6)	N3-C4-C3	118.74 (16)
N1-Mn1-03	84.83 (5)	N3-C4-C5	122.66 (16)
N2-Mn1-03	94.77 (5)	C3—C4—C5	118.57 (16)
N1-Mn1-Cl3	159.21 (4)	N1-C5-C4	119.22 (16)
N2-Mn1-Cl3	95.88 (4)	N1-C5-C6	114.37 (15)
03-Mn1-Cl3	79.22 (4)	C4—C5—C6	125.96 (16)
N1-Mn1-Cl2	101.95 (4)	N2-C6-C7	118.75 (16)
N2-Mn1-Cl2	91.20 (4)	N2—C6—C5	113.02 (15)
O3-Mn1-Cl2	172.10 (4)	C7—C6—C5	128.08 (16)
Cl3-Mn1-Cl2	95.060 (19)	N4—C7—C8	116.78 (16)
N1—Mn1—Cl3 ⁱ	99.41 (4)	N4—C7—C6	125.50 (17)
N2-Mn1-Cl3 ⁱ	171.41 (4)	C8—C7—C6	117.71 (17)

O3-Mn1-Cl3 ⁱ	85.61 (4)	C9—C8—C7	121.36 (17)
Cl3—Mn1—Cl3 ⁱ	92.622 (16)	C8-C9-C10	118.09 (18)
Cl2—Mn1—Cl3 ⁱ	89.253 (18)	N2-C10-C9	121.72 (17)
Mn1—Cl3—Mn1 ⁱ	87.378 (16)	N4-C11-N3	109.87 (15)
C101-03-C201	32.9 (3)	N4-C11-C12	110.50 (15)
C101-03-Mn1	133.45 (14)	N3-C11-C12	110.47 (15)
C201-03-Mn1	121.3 (5)	C17-C12-C13	119.01 (18)
C1-N1-C5	121.04 (16)	C17-C12-C11	121.45 (17)
C1-N1-Mn1	119.56 (12)	C13-C12-C11	119.52 (17)
C5-N1-Mn1	119.30 (12)	O2-C13-C14	121.55 (17)
C10-N2-C6	122.08 (16)	O2-C13-C12	118.55 (17)
C10-N2-Mn1	118.75 (12)	C14-C13-C12	119.90 (18)
C6-N2-Mn1	118.93 (12)	C15-C14-C13	120.26 (19)
C4-N3-C11	118.61 (15)	C14-C15-C16	120.48 (19)
C7—N4—C11	121.15 (16)	C17—C16—C15	119.23 (19)
N1-C1-C2	122.08 (17)	C16-C17-C12	121.06 (19)
C3-C2-C1	118.29 (17)	O3-C101-C102	111.1 (2)
C2-C3-C4	120.60 (17)	O3-C201-C202	108.9 (5)

Symmetry code(s): (i) -*x*+2, -*y*-1, -*z*+1.

Complex 4 – Selected geometric parameters (Å, º)

-			
Bond	Length (Å)	Bond	Length (Å)
Fe1—O1 ⁱ	1.8704 (13)	C3—C4	1.377 (3)
Fe1—O1	1.8704 (13)	C4—C5	1.404 (3)
Fe1—N3 ⁱ	1.9279 (17)	C5—C6	1.480 (3)
Fe1—N3	1.9279 (17)	C6—C7	1.416 (3)
Fe1—N2	1.9865 (17)	C7—C8	1.403 (3)
Fe1—N2 ⁱ	1.9865 (17)	C8—C9	1.366 (3)
01—C17	1.315 (2)	C9—C10	1.384 (3)
N1-C1	1.337 (3)	C11—C12	1.430 (3)
N1-C5	1.349 (3)	C12—C13	1.412 (3)
N2-C10	1.338 (3)	C12—C17	1.420 (3)
N2—C6	1.365 (3)	C13—C14	1.372 (3)
N3—C11	1.295 (3)	C14—C15	1.396 (3)
N3—C4	1.422 (3)	C15—C16	1.378 (3)
N4—C7	1.364 (3)	C16—C17	1.406 (3)
C1-C2	1.371 (3)	N5—C18	1.129 (3)
C2—C3	1.386 (3)	C18—C19	1.459 (4)

Bond	Angle (°)	Bond	Angle (°)
01 ⁱ —Fe1—01	180.00 (8)	C3-C4-N3	120.86 (19)
O1 ⁱ —Fe1—N3 ⁱ	89.83 (7)	C5-C4-N3	119.01 (18)

O1—Fe1—N3 ⁱ	90.17 (7)	N1-C5-C4	120.2 (2)
O1 ⁱ —Fe1—N3	90.17 (7)	N1-C5-C6	116.23 (19)
O1—Fe1—N3	89.83 (7)	C4—C5—C6	123.53 (19)
N3 ⁱ —Fe1—N3	180.00 (14)	N2—C6—C7	119.71 (19)
O1 ⁱ —Fe1—N2	88.99 (7)	N2-C6-C5	118.53 (18)
O1—Fe1—N2	91.01 (7)	C7—C6—C5	121.71 (19)
N3 ⁱ —Fe1—N2	94.12 (7)	N4—C7—C8	118.4 (2)
N3—Fe1—N2	85.88 (7)	N4—C7—C6	123.4 (2)
O1 ⁱ —Fe1—N2 ⁱ	91.01 (7)	C8—C7—C6	118.07 (19)
O1—Fe1—N2 ⁱ	88.99 (7)	C9—C8—C7	120.6 (2)
N3 ⁱ —Fe1—N2 ⁱ	85.88 (7)	C8-C9-C10	118.9 (2)
N3—Fe1—N2 ⁱ	94.12 (7)	N2-C10-C9	122.0 (2)
N2—Fe1—N2 ⁱ	180.00 (13)	N3-C11-C12	123.7 (2)
C17—O1—Fe1	123.47 (13)	C13-C12-C17	119.7 (2)
C1-N1-C5	118.8 (2)	C13-C12-C11	119.0 (2)
C10-N2-C6	120.62 (18)	C17—C12—C11	120.87 (19)
C10—N2—Fe1	116.41 (14)	C14-C13-C12	121.1 (2)
C6-N2-Fe1	122.93 (14)	C13-C14-C15	119.2 (2)
C11-N3-C4	119.80 (18)	C16-C15-C14	121.0 (2)
C11—N3—Fe1	125.35 (15)	C15-C16-C17	121.3 (2)
C4—N3—Fe1	114.85 (13)	O1-C17-C16	119.16 (19)
N1-C1-C2	123.9 (2)	O1-C17-C12	123.06 (19)
C1-C2-C3	118.0 (2)	C16—C17—C12	117.7 (2)
C4—C3—C2	119.0 (2)	N5-C18-C19	178.8 (3)
C3-C4-C5	120.0 (2)		

Symmetry code(s): (i) -x+2, -y, -z

Complex 5 - Selected geometric parameters (Å, º)

Bond	Length (Å)	Bond	Length (Å)
Fe1—05	1.796 (3)	C44—C43	1.416 (6)
Fe1—02	1.887 (3)	C18—N4	1.299 (5)
Fe1—O4	1.909 (3)	C18—C19	1.460 (5)
Fe1—N4	2.162 (3)	C20—O2	1.313 (5)
Fe1—N8	2.166 (3)	C20—C21	1.403 (6)
Fe2—05	1.778 (3)	C20—C19	1.422 (5)
Fe2—03	1.891 (3)	C13—O1	1.318 (5)
Fe2—O1	1.908 (3)	C13—C14	1.408 (6)
Fe2—N7	2.167 (3)	C13—C12	1.411 (6)
Fe2—N3	2.170 (3)	C1—N1	1.342 (6)
C3—C2	1.388 (6)	C1—C2	1.373 (6)
C3—C4	1.390 (5)	C26—C27	1.385 (6)
C29—N5	1.345 (5)	C26—C25	1.386 (7)
C29—C28	1.394 (5)	C11—N3	1.292 (5)
C29—C30	1.502 (5)	C11—C12	1.443 (6)

C30—N6	1.341 (5)	C12—C17	1.405 (6)
C30—C31	1.397 (5)	C36—C41	1.397 (6)
C5—N1	1.347 (5)	C42—N8	1.290 (5)
C5—C4	1.384 (5)	C42—C43	1.434 (6)
C5—C6	1.496 (5)	C43—C48	1.405 (6)
C7—C8	1.395 (5)	C21—C22	1.388 (7)
C7—C6	1.396 (5)	C10—N2	1.333 (5)
C7—N4	1.423 (5)	C22—C23	1.387 (7)
C28—C27	1.388 (5)	C32—C33	1.372 (6)
C28—N7	1.434 (5)	C41—C40	1.379 (6)
C37—O3	1.313 (5)	C38—C39	1.385 (7)
C37—C38	1.407 (6)	C14—C15	1.379 (7)
C37—C36	1.414 (6)	C40—C39	1.380 (7)
C35—N7	1.289 (5)	C25—N5	1.337 (6)
C35—C36	1.445 (6)	C34—N6	1.340 (6)
C24—C23	1.381 (6)	C34—C33	1.388 (6)
C24—C19	1.381 (6)	C17—C16	1.371 (7)
C31—C32	1.389 (6)	C45—C46	1.384 (7)
C31—N8	1.433 (5)	C47—C48	1.380 (7)
C4—N3	1.431 (5)	C47—C46	1.390 (7)
C9—C10	1.383 (6)	C15-C16	1.381 (8)
C9—C8	1.384 (6)	N9—C49	1.135 (9)
C6—N2	1.350 (5)	C49—C50	1.454 (11)
C44—O4	1.323 (5)	N10-C51	1.141 (7)
C44—C45	1.402 (6)	C52—C51	1.449 (7)

Bond	Angle	Bond	Angle
O5—Fe1—O2	123.32 (15)	C24—C19—C20	121.3 (4)
O5—Fe1—O4	117.65 (14)	C24—C19—C18	117.2 (3)
O2—Fe1—O4	119.02 (14)	C20-C19-C18	121.6 (4)
O5—Fe1—N4	95.01 (12)	N1-C1-C2	123.2 (4)
O2—Fe1—N4	86.81 (12)	C9—C8—C7	119.1 (4)
O4—Fe1—N4	89.17 (12)	C27—C26—C25	118.7 (4)
O5—Fe1—N8	95.00 (12)	N3-C11-C12	126.2 (4)
O2—Fe1—N8	88.32 (13)	C17—C12—C13	120.0 (4)
O4—Fe1—N8	85.52 (12)	C17—C12—C11	117.9 (4)
N4—Fe1—N8	169.95 (12)	C13-C12-C11	122.2 (4)
O5—Fe2—O3	118.73 (15)	C41—C36—C37	119.7 (4)
05—Fe2—01	114.47 (14)	C41—C36—C35	117.1 (4)
O3—Fe2—O1	126.78 (15)	C37—C36—C35	123.1 (4)
O5—Fe2—N7	99.15 (12)	N8-C42-C43	126.1 (4)
O3—Fe2—N7	86.50 (13)	C48—C43—C44	119.4 (4)
O1—Fe2—N7	86.62 (12)	C48—C43—C42	117.4 (4)
O5—Fe2—N3	98.80 (12)	C44—C43—C42	123.1 (4)
O3—Fe2—N3	86.15 (12)	C22—C21—C20	120.7 (4)

O1—Fe2—N3	84.67 (12)	N2-C10-C9	123.2 (4)
N7—Fe2—N3	162.00 (12)	C26—C27—C28	118.8 (4)
Fe2—O5—Fe1	148.0 (2)	C23-C22-C21	121.7 (4)
C2-C3-C4	118.8 (4)	C33-C32-C31	119.5 (4)
N5-C29-C28	122.6 (4)	C40-C41-C36	121.7 (4)
N5-C29-C30	114.5 (3)	C1-C2-C3	118.7 (4)
C28-C29-C30	122.7 (3)	C24—C23—C22	118.4 (4)
N6-C30-C31	122.1 (4)	C39—C38—C37	120.8 (4)
N6-C30-C29	114.3 (3)	C15-C14-C13	120.7 (5)
C31-C30-C29	123.6 (3)	C41—C40—C39	118.7 (4)
N1-C5-C4	122.3 (3)	C40—C39—C38	121.3 (4)
N1-C5-C6	114.9 (3)	N5-C25-C26	123.3 (4)
C4—C5—C6	122.7 (3)	N6-C34-C33	122.4 (4)
C8—C7—C6	118.3 (3)	C16-C17-C12	120.8 (5)
C8-C7-N4	120.1 (3)	C32—C33—C34	118.9 (4)
C6—C7—N4	121.5 (3)	C10—N2—C6	118.3 (4)
C27—C28—C29	118.7 (4)	C34—N6—C30	118.7 (4)
C27—C28—N7	120.6 (4)	C18—N4—C7	117.4 (3)
C29—C28—N7	120.7 (3)	C18—N4—Fe1	124.8 (3)
O3—C37—C38	119.0 (4)	C7—N4—Fe1	117.2 (2)
O3—C37—C36	123.3 (4)	C1-N1-C5	118.0 (4)
C38—C37—C36	117.8 (4)	C11—N3—C4	116.0 (3)
N7-C35-C36	125.6 (4)	C11—N3—Fe2	123.8 (3)
C23-C24-C19	121.1 (4)	C4—N3—Fe2	120.0 (2)
C32-C31-C30	118.4 (4)	C35—N7—C28	117.1 (3)
C32-C31-N8	119.3 (3)	C35—N7—Fe2	125.5 (3)
C30-C31-N8	122.3 (3)	C28—N7—Fe2	116.9 (2)
C5-C4-C3	118.9 (3)	C42-N8-C31	117.0 (3)
C5-C4-N3	120.9 (3)	C42—N8—Fe1	121.6 (3)
C3-C4-N3	120.2 (3)	C31—N8—Fe1	120.9 (3)
C10-C9-C8	118.6 (4)	C25-N5-C29	117.7 (4)
N2—C6—C7	122.2 (3)	C44—O4—Fe1	129.0 (3)
N2-C6-C5	113.5 (3)	C13—O1—Fe2	131.3 (3)
C7—C6—C5	124.2 (3)	C37—O3—Fe2	134.9 (3)
O4-C44-C45	119.8 (4)	C20-O2-Fe1	134.7 (3)
O4-C44-C43	122.1 (4)	C46—C45—C44	121.1 (4)
C45-C44-C43	118.1 (4)	C48—C47—C46	118.8 (4)
N4-C18-C19	126.3 (3)	C45—C46—C47	121.0 (4)
O2-C20-C21	119.1 (4)	C14—C15—C16	121.1 (4)
O2-C20-C19	124.1 (4)	C47—C48—C43	121.5 (4)
C21-C20-C19	116.8 (4)	C17—C16—C15	119.6 (5)
01-C13-C14	119.7 (4)	N9-C49-C50	178.4 (7)
O1-C13-C12	122.5 (4)	N10-C51-C52	179.1 (6)
C14-C13-C12	117.8 (4)		

S3- Magnetic studies

Fig. 3.1 χ T vs. T for $[Cu(L8)sal(ClO_4)]_2$ (2). The fit to the Bleaney-Bowers equation is shown as a red line.² Inset, plot of $1/\chi$ vs. T; the fit to the Curie Weiss law is shown as a red line.

Fig. 3.2 Temperature dependence of χT (per mole of dimer) for complex $[Mn(L9)Cl_2(EtOH)]_2$ (3). The red line is the fit to the dimer model for two interacting S = 5/2 ions.²⁷ Inset: Plot of $1/\chi$ vs. T (per mole of Mn²⁺; the fit to the Curie Weiss law is shown as a red line).

Fig. 3.1 Variation of the χ T product versus temperature for $[Fe(L10)_2CI] \cdot CH_3CN$ (4) and inset, variation of $1/\chi$ vs. T, the fit to the Curie Weiss Law is shown as a red line.

S4 - UV-Vis data

UV-Vis spectrum of a 10^{-5} M solution of complex **1** in methanol.

UV-Vis spectrum of a 10^{-5} M solution of complex **2** in methanol.

UV-Vis spectrum of a 10^{-5} M solution of complex 4 in methanol

UV-Vis spectrum of a 10⁻⁵ M solution of complex **5** in methanol

S5 – References

(a) H. Li, Acta Cryst. 2009, E65, o2290; (b) M. Aydemir, F. Durap, A. Baysal, N. Meric, A. Buldağ, B. Gümgüm, S. Özkar, L.T. Yıldırım, J. Mol. Cat A, 2010, 326, 75.
2 Bleaney, B.; Bowers, K. D. Proc. R. Soc. Lond. A. 1952, 214, 415.
3. J. H. van Vleck, Theory of Electrical and Magnetic Susceptibilities, Oxford University Press, Oxford, 1932.