Methyl-Substituted Cucurbit[6]uril-Based Microporous Supramolecular Frameworks for Highly Selective Et₂O/CH₃OH Adsorption

Chuan-Zeng Wang, Wen-Xuan Zhao, Fang-Fang Shen, Yun-Qian Zhang, Qian-Jiang Zhu, Xin Xiao*, and Zhu Tao*

Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China

EXPERIMENTAL SECTION

Fig. S1. The sorption isotherms of N₂ at 77 K by a micrometrics ASAP2020HD88 automated sorption analyser. \blacksquare symbol = adsorption and, \bullet symbol = desorption of the AE²⁺-HMeQ[6]-[CdCl₄]²-based microporous materials.

Fig. S2. Recyclability tests for methanol adsorption of the $Ba^{2+}-HMeQ[6]-[CdCl_4]^{2-}$ system microporous material.

Fig. S3. Powder X-ray diffraction (PXRD) of the coordination complexes 1, 2 and the corresponding comparison with simulation.

Fig. S4. TG curves of the coordination complexes 1, 2 and the corresponding comparison with HMeQ[6] powder in N₂ respectively.