Electronic Supplementary Information (ESI)

[Ln₄@Ln₄] matryoshka tetrahedron: A novel secondary building unit

Jie Zhao,^a Xin Wang,^a Jing Zhao,^a Rui Luo,^a Xuan Shen,^a Dunru Zhu*^{a,b} and Su Jing^c

^aState Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
^bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China.
^cCollege of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, China.

Contents

- 1. Materials and Methods
- 2. Syntheses of MOFs 1-3
- 3. Crystal Structure Determination
- 4. Molecular Structures
- 5. Coordination Modes of L²⁻ Ligands in 1-3
- 6. The PXRD Patterns
- 7. The Thermogravimetric Analysis
- 8. The Photoluminescence of MOF 1
- 9. The Magnetic Properties of MOFs 2 and 3
- 10. The FT-IR Spectra
- 11. References

Experimental Section

1. Materials and Methods.

All chemicals purchased were of analytical grade and used as received unless noted otherwise. 2,2'-Dimethoxy-4,4'-biphenyldicarboxylic acid (H₂L) was synthesized following the method provided by our group.¹ Ln(NO₃)₃·6H₂O (Ln = Eu, Gd, Dy), *N*,*N*'-dimethylformamide (DMF) were obtained from Sinopharm Chemical Reagent Co., Ltd. Shanghai, China. Elemental

analyses (C, H, N) were carried out with a Thermo Finnigan Flash 1112A elemental analyzer. IR spectra were recorded in the range 4000-400 cm⁻¹ using KBr pellets on a Bruker Vector 22 FT-IR spectrophotometer. Thermogravimetric analyses (TGA) were performed on a NETZSCH STA 449C thermal analyzer under nitrogen atmosphere at a heating rate of 10°C min⁻¹. Powder X-ray diffraction (XRD) data were collected on a Bruker D8 Advance diffractometer with Cu K_{α} radiation ($\lambda = 1.5406$ Å). Fluorescence spectroscopy data for **1** were recorded on a Perkin-Elmer LS-55 spectrophotometer. Temperature-dependent magnetic measurements for **2** and **3** were carried out on a Quantum Design MPMS-7 SQUID magnetometer. Diamagnetic correction was made with Pascal's constants.²

2. Syntheses of MOFs 1-3.

2.1 Synthesis of $[Eu_2(\mu_3 - OH)L_{2.5}(H_2O)_2] \cdot 0.5DMF$ (1).

The mixture of Eu(NO₃)₃·6H₂O (0.0446 g, 0.1 mmol), H₂L (0.0377 g, 0.125 mmol), DMF (2.4 mL), and H₂O (5.6 mL) was heated in a 25 mL capacity stainless-steel reactor lined with Teflon at 135°C for 2 days and then cooled to room temperature. Colorless block crystals of **1** were obtained. Yield, 66.3% (37.9 mg) based on Eu(III). FT-IR (KBr, cm⁻¹): 3604(m), 3339(b, m), 2934(w), 1667(m), 1587(s), 1531(s), 1416(vs), 1243(m), 1037(m), 781(s). Anal. Calcd for C_{41.5}H_{37.5}Eu₂N_{0.5}O_{18.5} (%): C, 43.60; H, 3.31; N, 0.61. Found: C, 43.28; H, 3.56; N, 0.81.

2.2 Synthesis of $[Gd_2(\mu_3-OH)L_{2.5}(H_2O)_2] \cdot 0.5DMF$ (2).

The procedure was the same as that for **1** except that $Eu(NO_3)_3 \cdot 6H_2O$ was replaced by $Gd(NO_3)_3 \cdot 6H_2O$ (0.0451 g, 0.1 mmol). Colorless block crystals of **2** were obtained. Yield, 74.5% (43.0 mg) based on Gd(III). FT-IR (KBr, cm⁻¹): 3608(m), 3337(b, m), 2934(w), 1668(m), 1588(s), 1546(s), 1420(vs), 1243(m), 1037(m), 781(s). Anal. Calcd for $C_{41.5}H_{37.5}Gd_2N_{0.5}O_{18.5}$ (%): C, 43.20; H, 3.28; N, 0.61. Found: C, 43.38; H, 3.56; N, 0.73.

2.3 Synthesis of $[Dy_2(\mu_3-OH)L_{2.5}(H_2O)_2] \cdot 0.5DMF$ (3).

The procedure was the same as that for **1** except that $Eu(NO_3)_3 \cdot 6H_2O$ was replaced by $Dy(NO_3)_3 \cdot 6H_2O$ (0.0457 g, 0.1 mmol). Colorless block crystals of **3** were obtained. Yield, 70.8% (41.2 mg) based on Dy(III). FT-IR (KBr, cm⁻¹): 3611(m), 3346(b, m), 2931(w), 1668(m), 1589(s), 1547(s), 1420(vs), 1243(m), 1037(m), 780(s). Anal. Calcd for $C_{41.5}H_{37.5}Dy_2N_{0.5}O_{18.5}$ (%): C, 42.81; H, 3.25; N, 0.60. Found: C, 43.18; H, 3.56; N, 0.78.

3. Crystal Structure Determination.

Diffraction data for 1-3 were collected on a Bruker Smart APEX II CCD diffractometer with

graphite-monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å). The diffraction data of **1** were collected at room temperature, and **2** and **3** were collected at 150 K. Empirical absorption corrections were applied by using the SADABS program. The structures were solved by direct methods and refined by the full-matrix least-squares based on F^2 using SHELXTL-97 program.³ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms, were placed on calculated positions (C-H 0.96 Å) and assigned isotropic thermal parameters riding on their parent atoms. The crystal data and structure refinement of **1-3** are summarized in Table S1. Selected bond lengths of **1-3** are listed in Table S2. Selected bond angles of **1-3** are listed in Table S3. Crystallographic data for MOFs **1-3** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications CCDC-976994 (**1**), 998558 (**2**) and 998559 (**3**). The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

MOEa	1	2	2
		<u> </u>	3
Empirical formula	$C_{41.5}H_{37.5}Eu_2N_{0.5}O_{18.5}$	$C_{41.5}H_{37.5}Gd_2N_{0.5}O_{18.5}$	$C_{41.5}H_{37.5}Dy_2N_{0.5}O_{18.5}$
Formula weight	1143.14	1153.72	1164.22
$T(\mathbf{K})$	296(2)	150(2)	150(2)
Crystal system	Tetragonal	Tetragonal	Tetragonal
Space group	$P4_2/n$	$P4_2/n$	$P4_2/n$
<i>a</i> (Å)	21.2904(4)	21.2232(6)	21.1619(9)
<i>b</i> (Å)	21.2904(4)	21.2232(6)	21.1619(9)
c (Å)	19.3576(7)	19.3460(11)	19.2599(15)
$V(Å^3)$	8774.4(4)	8713.9(6)	8625.1(8)
Ζ	8	8	8
F(000)	4512	4528	4560
ρ (g cm ⁻³)	1.731	1.759	1.793
μ (mm ⁻¹)	2.910	3.095	3.516
Crystal size (mm ³)	0.16×0.15×0.12	0.20×0.15×0.13	0.15×0.12×0.10
Reflections collected	61675	61506	60494
Indonandont reflections	7705	7699	7560
Independent reflections	$[R_{\rm int} = 0.0669]$	$[R_{int} = 0.0725]$	$[R_{\rm int} = 0.0970]$
Data/restraints/parameters	7705/71/661	7699 /34/595	7560/58/580
GOF on F^2	1.048	1.071	1.033
$R_1/wR_2 [I > 2\sigma(I)]$	0.0306/0.0723	0.0329/0.0825	0.0366/0.0850
R_1/wR_2 (all data)	0.0478/0.0778	0.0438/0.0874	0.0568/0.0917
Largest diff. peak & hole (eÅ ⁻³)	0.908, -0.689	1.383, -1.288	1.294, -1.065

Table S1 Crystal data and structure refinement of MOFs 1-3

1		2		3	
Eu1-O16 ^a	2.335(3)	Gd1-O16	2.323(3)	Dy1-O16	2.295(4)
Eu1-O7	2.368(4)	Gd1-07	2.361(4)	Dy1-O7	2.324(4)
Eu1-O1	2.366(3)	Gd1-O1	2.356(3)	Dy1-O1	2.322(4)
Eu1-O16	2.406(3)	Gd1-O16 ^e	2.389(3)	Dy1-O16 ^j	2.351(4)
Eu1-O2W	2.423(3)	Gd1-O1W	2.399(3)	Dy1-O2W	2.364(4)
Eu1-O16 ^c	2.508(3)	$Gd1-O4^{\rm f}$	2.490(3)	Dy1-O4 ⁿ	2.452(4)
Eu1-O3 ^b	2.509(3)	Gd1-O16 ^g	2.490(3)	Dy1-O16 ^m	2.468(4)
Eu1-O8	2.840(3)	Gd1-08	2.828(3)	Dy1-O8	2.860(4)
Eu2-O9°	2.280(4)	Gd2-O9 ^h	2.271(4)	Dy2-O9 ^k	2.252(5)
Eu2-O4 ^b	2.310(3)	$Gd2-O3^{\rm f}$	2.297(3)	Dy2-O3 ⁿ	2.262(4)
Eu2-O10 ^d	2.317(4)	Gd2-08	2.314(3)	Dy2-08	2.280(4)
Eu2-O8	2.335(3)	Gd2-O10 ⁱ	2.315(3)	Dy2-O10°	2.280(4)
Eu2-O2	2.403(4)	Gd2-O2	2.386(4)	Dy2-O2	2.367(4)
Eu2-O1W	2.432(4)	Gd2-O2W	2.423(4)	Dy2-O1W	2.397(4)
Eu2-O13	2.477(3)	Gd2-O13	2.465(3)	Dy2-O13	2.437(4)
Eu2-O14	2.576(4)	Gd2-O14	2.544(3)	Dy2-O14	2.529(4)
Eu1-Eu2	4.165(4)	Gd1-Gd2	4.161(4)	Dy1-Dy2	4.169(4)
Eu1-Eu1ª	3.8975(4)	Gd1-Gd1e	3.8732(4)	Dy1-Dy1 ¹	3.8171(5)
Eu1 ^a -Eu1 ^c	3.900(4)	Gd1-Gd1 ^g	3.8669(5)	Dy1-Dy1 ^m	3.8211(6)

Table S2 Selected bond lengths (Å) for MOFs 1–3

Symmetry codes: a) *x*+1, 5/2-*y*, -*z*-1/2; b) *x*+1/2, 3–*y*, *z*+1/2; c) 5/2-*x*, *y*-1, -*z*-1/2; d) 2-*x*, *y*-1/2, *z*+1/2; e) 3/2-*x*, *y*+1, 1/2-*z*; f) *x*-3/2, 1-*y*, *z*+1/2; g) 5/2-*x*, 1/2-*y*, *z*; h) *x*-1, 3/2-*y*, -*z*-1/2; i) 1-*x*, *y*+1/2, *z*+1/2; j) *x*, -*y*-1/2, 3/2-*z*; k) -*x*-1/2, *y*, 1/2-*z*; l) -*x*-1/2, *y*, 3/2-*z*; m) -*x*-1/2, *y*, 2; m) -*x*-1/2, *z*; n) -*x*, *y*+1/2, *z*+1/2; o) *x*+1/2, -*y*, *z*+1/2.

Table S3 Selected bond angles (°) for MOFs 1–3

1					
O16 ^a –Eu1–O1	77.37(12)	O7–Eu1–O8	48.02(11)	O9d-Eu2-O1W	84.75(16)
O16ª–Eu1–O7	95.83(13)	O16-Eu1-O8	150.59(10)	O4b-Eu2-O1W	85.87(14)
O1–Eu1–O7	85.53(15)	O2W-Eu1-O8	69.24(12)	O10e-Eu2-O1W	71.34(15)
O16 ^a –Eu1–O16	70.20(13)	O16°-Eu1-O8	106.42(10)	O8–Eu2–O1W	142.91(14)
O1-Eu1-O16	129.77(11)	O3 ^b –Eu1–O8	107.90(10)	O2-Eu2-O1W	70.12(14)
O7–Eu1–O16	134.03(12)	O16 ^a –Eu1–O4 ^b	143.13(10)	O9d-Eu2-O13	75.17(14)
O16 ^a –Eu1–O2W	143.39(12)	O1–Eu1–O4 ^b	81.66(11)	O4 ^b -Eu2-O13	125.83(13)
O1–Eu1–O2W	139.21(12)	O7–Eu1–O4 ^b	112.47(11)	O10e-Eu2-O13	72.28(14)
O7–Eu1–O2W	87.51(15)	O16-Eu1-O4 ^b	102.34(10)	O8-Eu2-O13	83.46(12)
O16–Eu1–O2W	81.36(11)	O2W-Eu1-O4 ^b	64.21(11)	O2-Eu2-O13	144.75(14)
O16ª-Eu1-O16°	69.10(12)	O16 ^c -Eu1-O4 ^b	143.15(10)	O1W-Eu2-O13	129.25(13)
O1-Eu1-O16 ^c	132.97(11)	O3 ^b –Eu1–O4 ^b	43.96(10)	O9d-Eu2-O14	124.41(15)
O7–Eu1–O16 ^c	66.75(12)	O8–Eu1–O4 ^b	64.52(9)	O4 ^b -Eu2-O14	74.62(13)
O16-Eu1-O16 ^c	67.37(12)	O9d-Eu2-O4b	157.64(15)	O10e-Eu2-O14	72.27(14)

O2W-Eu1-O16 ^c	79.07(11)	O9d-Eu2-O10e	109.17(14)	O8-Eu2-O14	72.12(13)
O16 ^a –Eu1–O3 ^b	103.68(11)	O4 ^b -Eu2-O10 ^e	86.83(14)	O2-Eu2-O14	136.93(12)
O1–Eu1–O3 ^b	84.75(13)	O9d-Eu2-O8	88.71(14)	O1W-Eu2-O14	139.34(15)
O7–Eu1–O3 ^b	155.69(12)	O4 ^b -Eu2-O8	86.62(12)	O13-Eu2-O14	51.65(12)
O16–Eu1–O3 ^b	67.61(11)	O10e-Eu2-O8	144.27(14)	Eu2f-O4-Eu1f	99.21(11)
O2W-Eu1-O3 ^b	85.41(12)	O9d-Eu2-O2	78.56(15)	Eu2–O8–Eu1	106.78(12)
O16 ^c –Eu1–O3 ^b	133.99(11)	O4 ^b -Eu2-O2	79.17(13)	Eu1 ^c -O16-Eu1	110.57(12)
O16a–Eu1–O8	136.41(11)	O10e-Eu2-O2	139.71(15)	Eu1 ^c -O16-Eu1 ^a	107.23(12)
O1–Eu1–O8	76.44(12)	O8–Eu2–O2	72.79(13)	Eu1–O16–Eu1 ^a	104.95(12)
		2			
O16-Gd1-O1	77.68(12)	O4h-Gd1-O16i	134.39(11)	O8-Gd2-O2W	143.06(13)
O16-Gd1-O7	96.12(12)	O16-Gd1-O8	136.21(11)	O10 ^k –Gd2–O2W	70.87(14)
O1–Gd1–O7	85.54(14)	O1-Gd1-O8	74.81(11)	O2–Gd2–O2W	69.56(13)
O16–Gd1–O16 ^g	70.23(13)	O7–Gd1–O8	48.69(11)	O9 ^j -Gd2-O13	75.24(14)
O1–Gd1–O16 ^g	130.11(11)	O16g-Gd1-O8	151.43(10)	O3 ^h -Gd2-O13	126.05(12)
O7–Gd1–O16 ^g	134.00(12)	O1W-Gd1-O8	69.88(11)	O8-Gd2-O13	83.73(12)
O16–Gd1–O1W	143.78(12)	O4h-Gd1-O8	106.98(10)	O10 ^k –Gd2–O13	72.39(13)
O1–Gd1–O1W	138.50(12)	O16 ⁱ Gd1O8	107.59(10)	O2-Gd2-O13	145.27(13)
O7–Gd1–O1W	87.19(14)	$O9^{j}$ – $Gd2$ – $O3^{h}$	157.34(14)	O2W-Gd2-O13	128.54(13)
O16g–Gd1–O1W	81.61(11)	O9 ^j -Gd2-O8	88.48(13)	O9 ^j -Gd2-O14	124.76(14)
O16–Gd1–O4 ^h	103.39(11)	O3h-Gd2-O8	86.67(12)	O3h-Gd2-O14	74.46(12)
O1–Gd1–O4 ^h	84.29(12)	O9 ^j -Gd2-O10 ^k	109.31(14)	O8-Gd2-O14	72.26(12)
O7–Gd1–O4 ^h	155.49(12)	$O3^h$ – $Gd2$ – $O10^k$	86.86(13)	O10 ^k –Gd2–O14	72.57(13)
O16g-Gd1-O4h	67.88(11)	O8-Gd2-O10k	144.70(13)	O2-Gd2-O14	137.51(12)
O1W-Gd1-O4 ^h	85.77(12)	O9 ^j -Gd2-O2	78.21(14)	O2W-Gd2-O14	139.34(13)
O16–Gd1–O16 ⁱ	69.37(12)	O3h-Gd2-O2	79.19(13)	O13-Gd2-O14	52.04(12)
O1–Gd1–O16 ⁱ	133.25(11)	O8-Gd2-O2	73.51(12)	Gd2O8Gd1	107.61(12)
O7–Gd1–O16 ⁱ	66.65(12)	O10 ^k –Gd2–O2	138.65(14)	Gd1-O16-Gd11	110.57(12)
O16 ^g –Gd1–O16 ⁱ	67.46(12)	O9 ^j -Gd2-O2W	84.32(14)	Gd1-O16-Gd1 ⁱ	106.85(12)
O1W–Gd1–O16 ⁱ	79.18(11)	O3h-Gd2-O2W	86.33(13)	Gd1 ¹ -O16-Gd1 ⁱ	105.06(12)
		3			
O16-Dy1-O7	96.70(15)	O1–Dy1–O16 ^p	133.47(14)	O9n-Dy2-O1W	83.39(16)
O16-Dy1-O1	77.97(15)	O16 ^m –Dy1–O16 ^p	67.74(18)	O3q-Dy2-O1W	86.46(15)
O7-Dy1-O1	84.34(16)	O2W-Dy1-O16 ^p	79.19(14)	O10 ^r –Dy2–O1W	70.86(16)
O16–Dy1–O16 ^m	70.61(18)	O4q-Dy1-O16 ^p	135.11(14)	O8-Dy2-O13	83.29(15)
O7–Dy1–O16 ^m	135.26(15)	O16–Dy1–O8	136.57(14)	O10 ^r -Dy2-O13	72.58(16)
O1–Dy1–O16 ^m	130.74(14)	O7–Dy1–O8	48.14(13)	O2-Dy2-O13	145.24(16)
O16–Dy1–O2W	144.51(15)	O1-Dy1-O8	74.09(13)	O1W-Dy2-O13	128.34(15)
O7–Dy1–O2W	86.67(16)	O16 ^m –Dy1–O8	151.04(13)	O9n-Dy2-O14	125.56(17)
O1-Dy1-O2W	137.42(15)	O2W-Dy1-O8	68.98(14)	O3q-Dy2-O14	73.87(15)
O16 ^m –Dy1–O2W	82.20(14)	O4q-Dy1-O8	105.20(13)	O10 ^r –Dy2–O14	73.11(16)
O16–Dy1–O4 ^q	104.32(14)	O16 ^p –Dy1–O8	108.05(13)	O8-Dy2-O14	72.34(15)
O7–Dy1–O4 ^q	153.39(14)	O9n-Dy2-O3q	157.62(17)	O2-Dy2-O14	137.08(14)
O1–Dy1–O4 ^q	84.27(15)	O9 ⁿ –Dy2–O10 ^r	108.56(17)	O1W-Dy2-O14	139.67(15)

O16 ^m –Dy1–O4 ^q	68.55(14)	O3q-Dy2-O10r	86.66(16)	O13-Dy2-O14	52.92(15)
O2W-Dy1-O4q	85.59(14)	O9n-Dy2-O2	78.41(17)	Dy1°-O16-Dy1 ^p	104.74(16)
O16–Dy1–O16 ^p	69.74(17)	O3q-Dy2-O2	79.35(16)	Dy1-O16-Dy1°	110.48(18)
O7–Dy1–O16 ^p	67.69(15)	O10 ^r –Dy2–O2	138.28(17)	Dy1-O16-Dy1 ^p	106.61(16)

Symmetry codes: a) 5/2-*y*, *x*+1, -*z*-1/2; b) 3–*y*, *x*+1/2, *z*+1/2; c) *y*-1, 5/2-*x*, -*z*-1/2; d) 5/2-*y*, *x*+1, -*z*-3/2; e) *y*-1/2, 2-*x*, *z*+1/2; f) *y*-1/2, 3-*x*, *z*-1/2; g) *y*+1, 3/2-*x*, 1/2-*z*; h) 1-*y*, *x*-3/2, *z*+1/2; i) 5/2-*x*, 1/2-*y*, *z*; j) 3/2-*y*, *x*-1, -*z*-1/2; k) *y*+1/2, 1-*x*, *z*+1/2; l) 3/2-*y*, *x*-1,1/2-*z*; m) -*y*-1/2, *x*, 3/2-*z*; n) *y*, -*x*-1/2, 1/2-*z*; o) *y*, -*x*-1/2, 3/2-*z*; p) – *x*-1/2, -*y*-1/2, *z*; q) *y*+1/2, -*x*, *z*+1/2; r) –*y*, *x*+1/2,z+1/2.

D−H····A	d(D–H)	$d(H \cdots A)$	$d(D \cdots A)$	∠D–H…A
$O1W\text{-}H1WA\cdots O13^{i}$	0.84(4)	1.95(5)	2.782(6)	168(5)
O1W–H1WB…O17 ⁱⁱ	0.85(4)	1.94(4)	2.789(11)	171(4)
O2W−H2WA…O3 ⁱⁱ	0.85	1.92	2.654(5)	144
C16–H16A…O11 ⁱⁱⁱ	0.96	2.52	3.340(10)	144
C23–H23A…O13	0.93	2.54	3.415(7)	157
$C35AH35A\cdots O1W^{i}$	0.93	2.53	3.43(2)	164
C40A–H40B····O6 ⁱⁱ	0.96	2.43	3.19(2)	136

Table S4 Hydrogen-bonding geometry (Å, °) for MOF 1

Symmetry codes: i) 2–*x*, 3-*y*, -*z*-1; ii) *y*-1, -*x*-3/2, -*z*-3/2, iii) *y*, -*x*-1/2, -*z*-3/2.

4. Molecular Structures.

Fig. S1 ORTEP drawing (at 50% probability) of the asymmetric unit for MOF **1** (Hydrogen atoms and disordered atoms (C35B, C36B, C37B, C40B and O15B) are omitted for clarity).

Fig. S2 ORTEP drawing (at 50% probability) of the asymmetric unit for MOF 2 (Hydrogen atoms are omitted for clarity).

Fig. S3 ORTEP drawing (at 50% probability) of the asymmetric unit for MOF **3** (Hydrogen atoms are omitted for clarity).

Fig. S4 (a) An outscribed sphere of 1.3 nm diameter surrounds the [Eu₄@Eu₄] SBU. (b) The diamond net of **1** built from the 4-connected SBU by missing all the biphenyl groups of L²⁻ ligands.

Fig. S5 The network of 1 stabilized by weak hydrogen bonds (blue dotted lines).

5. Coordination Modes of L²⁻ Ligands in 1-3.

Scheme S1 Three kinds of coordination modes of ligand L²⁻ in MOFs 1-3.

6. The PXRD Patterns.

Fig. S6 Experimental and simulated powder X-ray diffraction patterns of MOF 1.

Fig. S7 Experimental and simulated powder X-ray diffraction patterns of MOF 2.

Fig. S8 Experimental and simulated powder X-ray diffraction patterns of MOF 3.

7. The Thermogravimetric Analysis.

Fig. S9 TGA curve for MOF 1.

8. The Photoluminescence of MOF 1.

Fig. S12 The photoluminescence emission spectra of the MOF 1 ($\lambda_{ex} = 394$ nm) at room temperature.

9. The Magnetic Properties of MOFs 2 and 3.

Fig. S13 Variable-temperature susceptibilities of 2 under a field of 100 Oe. (a) The plot of χ_{M} and $\chi_{M}T vs. T$. (b) The plot of χ_{M} and $\chi_{M}^{-1} vs. T$. The solid blue lines were derived from the fitting by the Curie-Weiss law.

Fig. S14 Temperature dependence of the molar magnetic susceptibilities of **3**. (a) The plots of $\chi_{\rm M}$ and $\chi_{\rm M}^{-1}$ vs. *T*. Solid blue lines were derived from the fitting by the Curie-Weiss law. (b) The plot of $\chi_{\rm M}T$ vs. *T*. Inset: Reduced magnetization data for **3** at low temperatures.

Fig. S16 Temperature dependence of the real χ' and imaginary χ'' components of the AC susceptibility measured in $H_{dc} = 0$ Oe applied field at different ac frequency for **3**.

Fig. S17 Temperature dependence of the real χ' and imaginary χ'' components of the AC susceptibility measured in $H_{dc} = 800$ Oe applied field at different ac frequency for 3.

Fig. S18 $\ln(\chi''/\chi')$ *vs.* 1/*T* plots for **3** at different frequencies of the 5.0 Oe ac field. The solid lines are the best-fit curves (see text).

Fig. S19 Frequency dependence at 3 K of the imaginary χ'' components of the AC susceptibilities measured in different DC applied field for **3**.

10. The FT-IR Spectra.

Fig. S21 The IR spectra of MOF 2.

11. References.

- X. Wang, J. Zhao, Y. Zhao, H. Xu, X. Shen, D. R. Zhu and S. Jing, *Dalton Trans.*, 2015, 44, 9281-9288.
- 2. O. Kahn, Molecular Magnetism; VCH, Weinheim, Germany, 1993.
- 3. G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2007, 64, 112.