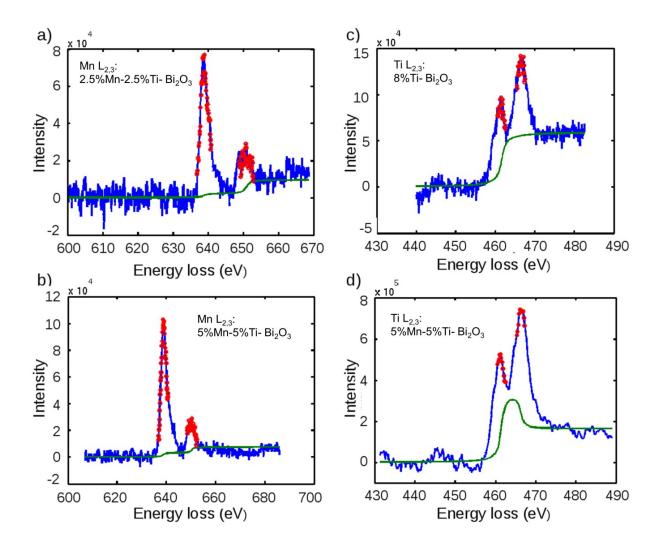
Electronic Supplementary Information

Decrease of the required dopant concentration for

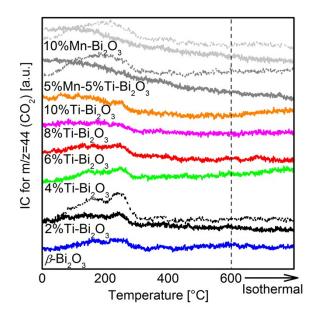
δ -Bi₂O₃ crystal stabilization through thermal

quenching during single-step flame spray pyrolysis

Jochen A.H. Dreyer,^a Suman Pokhrel,^b Johannes Birkenstock,^c Miguel G. Hevia,^d Marco


Schowalter,^e Andreas Rosenauer,^e Atsushi Urakawa,^d Wey Yang Teoh^a and Lutz Mädler^{b,*}

^a Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, Hong Kong SAR.


- ^b Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany. E-mail: Imaedler@iwt.uni-bremen.de
- ^c Central Laboratory for Crystallography and Applied Materials, University of Bremen, Germany.

^{*d*} Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.

^e Institute of Solid State Physics, University of Bremen, Germany.

Fig. S1 EELS spectrum of $L_{2,3}$ edge of Mn or Ti containing Bi_2O_3 . (a) Mn $L_{2,3}$ edge spectra of 2.5%Mn-2.5%Ti-Bi_2O_3 (b) Mn $L_{2,3}$ edge spectra of 5%Mn-5%Ti-Bi_2O_3 (c) Ti $L_{2,3}$ edge spectra of 8%Ti-Bi_2O_3 (d) Ti $L_{2,3}$ edge spectra of 5%Mn-5%Ti-Bi_2O_3. The EELS data confirm the oxidation states of Mn to be +2.

Fig. S2 Ion current (IC) for m/z=44 (CO₂) during H_2 -TPRs of the as-prepared samples synthesized by FSP indicate small CO₂ desorption, which was amplified during H_2 -TPRs conducted with 50 mg of sample (dotted line).