Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Core-Shell Structured CeO₂@MoS₂ Nanocomposites for High Performance Symmetric Supercapacitor

Na Li, Hongyang Zhao, Yi Zhang, Zhengqing Liu, Xueyun Gong and Yaping Du*

Chemicals. Cerium (III) nitrate hexahydrate (Ce(NO₃)₃·6H₂O, 99.99 %, Sigma-Aldrich), tetraethylorthosilcate (Si(OC₂H₅)₄, 98 %, Acros Organics), sodium molybdate (Na₂MoO₄·2H₂O, 99 %, Fluka), thioacetamide (CH₃CSNH₂, 98 %, Sigma-Aldrich), 1-ethyl-3-methylimidazolium tetrafluoroborate (Emim(BF₄), C₆H₁₁BF₄N₂, 98%, Energy Chemical), sodium sulfate (Na₂SO₄, 99%, Energy Chemical). Ammonium hydroxide (NH₃·H₂O, 25 %), absolute ethanol (C₂H₆O, 99.7 %), sodium hydroxide (NaOH, 96 %) and ethylene glycol (C₂H₆O₂) were purchased from Tianjin Zhiyuan Chemical Company. All chemicals were used without any further purification. Deionized water was used throughout this study.

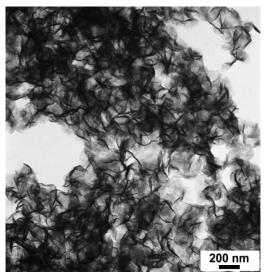
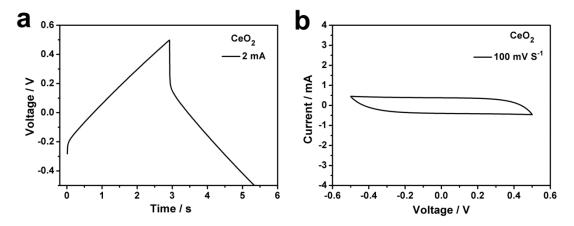
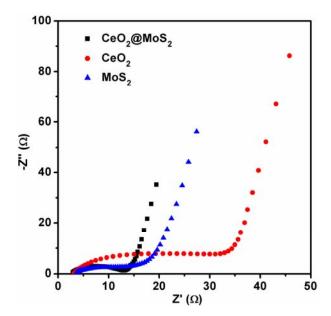




Figure S1. TEM image of pure MoS₂ nanosheets.

Figure S2. The electrochemical performance of CeO_2 porous hollow spheres in a two-electrode cell with aqueous electrolyte (1M Na_2SO_4). (a) The galvanostatic charge-discharge profiles of CeO_2 hollow spheres at the applied current of 2 mA (The active electrodes area was ca. 0.785 cm²). (b) Cyclic voltammetry plots of CeO_2 hollow spheres at the scan rate of 100 mV s⁻¹.

Figure S3. EIS Nyquist plots of $CeO_2@MoS_2$ nanocomposites, CeO_2 hollow spheres and MoS_2 nanosheets with aqueous electrolyte (1M Na_2SO_4). We used AUTOLAB electrochemistry workstation to test the impedance of $CeO_2@MoS_2$ nanocomposites, CeO_2 hollow spheres and MoS_2 nanosheets. As shown in **Figure S3**, Nyquist plots revealed the charge-transfer resistance (R_{ct}) for $CeO_2@MoS_2$ nanocomposites was the smallest compared with pure MoS_2 nanosheets and CeO_2 hollow spheres, indicating a smaller reaction resistance and hence a better performance for supercapacitor with aqueous electrolyte (1M Na_2SO_4) for $CeO_2@MoS_2$ nanocomposites.