Supporting Information

A Mild and Environmental Benign Strategy Towards Hierarchical CeO₂/Au Nanoparticle Assemblies with Crystal Facets Enhanced Catalytic Effects for Benzyl Alcohol Aerobic Oxidation

Xia Gong,^[a] Baocang Liu,^[a,b] Geng Zhang,^[a] Guangran Xu,^[a] Tuo Zhao,^[a] Dichao Shi,^[a] Qin

Wang,^[a,b] and Jun Zhang*^[a,b]

^[a] College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.

R. China

^[b] Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University,

Hohhot 010021, P. R. China

^{*} Corresponding author: Jun Zhang, Tel & Fax: 0086 471 4995400, Email: cejzhang@imu.edu.cn

@CeO ₂	d _{CeO2} (nm)	I _{(200)/(111)}	I _{(220)/(111)}	$\begin{array}{c} S_{BET} \\ (m^2 \cdot g^{-1}) \end{array}$	D _{pore} (nm)	V _{pore} (cm ³ /g)
Untreated	3.5	0.29	0.49	141.1	-	0.19
[Bmim][BF ₄] ^a	9.5	0.35	0.59	60.3	7.2	0.25
[Bmim][BF ₄] ^b	13.7	0.44	0.64	63.75	3.2	0.32
NH ₄ BF ₄	11.4	0.43	0.61	62.8	3.5	0.27
NaBF ₄	7.1	0.35	0.68	62.3	9.6	0.27
$\rm NH_4F$	6.5	0.33	0.58	67.0	10.1	0.26

Table S1. Particle size, ratio of the exposed crystal facets, surface area, pore size, and pore volume of of $@CeO_2$ spheres, $@CeO_2$ nanoparticle assemblies, and CeO₂ nanoparticles.

 ${}^{a}CeO_{2}$ nanoparticles obtained by etching CeO_{2} nanoparticles with $[Bmim][BF_{4}]$ in the absence of SiO₂ sphere templates.

^b@CeO₂ nanoparticle assemblies obtained by etching @CeO₂ spheres with [Bmim][BF₄].

@CeO ₂ /Au	Ce (%)	Ce ³⁺ /Ce ⁴⁺ (%)	F (%)	Au ⁰ (%)	$\operatorname{Au}^{n+}(\%)$
Untreated	18.9	20.2	-	77.1	22.9
[Bmim][BF ₄] ^a	19.8	31.5	15.7	82.3	17.7
[Bmim][BF ₄] ^b	20.0	29.0	8.4	70.5	29.5
NH ₄ BF ₄	19.3	24.7	11.1	75.9	24.1
NaBF ₄	19.7	23.2	12.0	80.3	19.7
NH ₄ F	19.1	22.8	9.6	79.0	21.0

Table S2. XPS results for $@CeO_2/Au$ spheres, $@CeO_2/Au$ nanoparticle assemblies, and CeO_2/Au nanoparticles

 $^{a}CeO_{2}/Au$ nanoparticles obtained by etching CeO₂ nanoparticles with [Bmim][BF₄] in the absence of SiO₂ sphere templates.

^b@CeO₂/Au nanocube assemblies obtained by etching @CeO₂ spheres with [Bmim][BF₄]

Table S3. The $@CeO_2/Au$ etching by [Bmim][BF₄] for Oxidation of benzyl alcohol with different morphology and solvent.

$\begin{array}{c} CH_2OH & CHO \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ Toluene, 80^\circ C, 5h \end{array}$					
@CeO ₂ /Au	Au loading (wt %)	Solvent	Conversion (%)	Selectivity (%)	
Untreated	2.47	toluene	62.1	82.6	
[Bmim][BF ₄] ^b	1.67	toluene	89.6	91.1	
[Bmim][BF ₄] ^a	2.44	toluene	43.3	85.5	
[Bmim][BF ₄] ^b	1.67	trifluorotoluene	100	72.2	

 $^{a}CeO_{2}/Au$ nanoparticle assemblies obtained by etching CeO₂ nanoparticles with [Bmim][BF₄] in the absence of SiO₂ sphere templates.

^b@CeO₂/Au nanocube assemblies obtained by etching @CeO₂ spheres with [Bmim][BF₄].

Table S4. The different Au content of @CeO₂/Au etching by [Bmim][BF₄] for Oxidation of benzyl alcohol.

$\begin{array}{c} CH_2OH & CHO \\ & & \\ & \\ & \\ & \\ \hline \\ & \\ & \\ \hline \\ & \\ &$					
@CeO ₂ /Au	Au loading (wt %)	Solvent	Conversion (%)	Selectivity (%)	
	0.85	toluene	52.1	83.2	
[Bmim][BF ₄]ª	1.16	toluene	73.4	84.7	
	1.67	toluene	89.6	91.1	

^a@CeO₂/Au nanocube assemblies obtained by etching @CeO₂ spheres with [Bmim][BF₄].

Benzyl Time Catalyst Temperature Conversion Selectivity Catalyst Solvent alcohol Ref. amount $(^{\circ}C)$ (h) (%) (%) (mmoL) @CeO₂/Au This 89.6 80 5 Toluene 1 91.1 nanoparticle 0.1 g work assemblies $(a)CeO_2/Au$ This 90 3 Toluene 4 95.6 nanoparticle 0.1 g 37.1 work assemblies 3 >99 Au/Sm-CeO₂ 0.1 g 90 Toluene 4 27.41 43 Au/CeO₂ 0.1 g 130 2 0.1 64.5 86.2 44 Au-CeO₂@SBA-15 0.1g 90 3 Toluene 2.5 39 >99 45 Chlorob 99 Au/CeO₂ 0.02g 90 8h 1 96 46 -enzene

Table S5. Comparison of catalytic performance of present $@CeO_2/Au$ nanoparticle assemblies and other previously reported Au/CeO₂ based catalysts for benzyl alcohol aerobic oxidation.

Table S6. The results of recyclability of @CeO₂/Au nanoparticle assemblies, @CeO₂/Au nanoparticle assemblies calcined at 300 °C for 2 h, and CeO₂/Au nanopowders for oxidation of benzyl alcohol.

Catalysts	Cycle 1	Cycle 2	Cycle 3
CeO ₂ /Au nanoparticle assemblies	89.6 %	62.5 %	47.8 %
CeO ₂ /Au nanopowders	54.3 %	21.5 %	8.4 %
CeO ₂ /Au nanoparticle assemblies calcined at 300 °C	91.3 %	85.4 %	73.7 %

Reaction conditions: benzylic alcohol (1 mmol), catalyst (100 mg), K₂CO₃ (1 mmol),

toluene (10 mL), 5 h, 80 °C, oxygen atmosphere. The product was determined by HPLC using biphenyl as an internal standard.

Figure S1. The XRD patterns of $@CeO_2$ nanoparticle assemblies obtained by etching with [Bmim][BF₄] at 160 °C for different reaction times prolonged from 1-24 h.

Figure S2. The XRD patterns of $@CeO_2$ nanoparticle assemblies obtained by etching $@CeO_2$ spheres with various fluorine-contained agents of (a) [Bmim][BF₄] (b) NH₄BF₄, (c) NaBF₄, and (d) NH₄F under hydrothermal condition at 160 °C for 2 h.

Figure S3. (A) TEM image, (B) EDX spectroscopy, (C) STEM, and (D) line scanning of SiO₂@CeO₂.

Figure S4. The TEM images of $@CeO_2$ nanoparticle assemblies obtained by etching $@CeO_2$ with [Bmim][BF₄] at 160 °C for different reaction times (a) 1 h, (b) 2 h, (c) 4 h, and (d) 6 h.

Figure S5. (A) N₂ absorption and desorption isomers and (B) BJH measurements of (a) @CeO₂ spheres without etching treatment, @CeO₂ nanoparticle assemblies obtained by etching @CeO₂ spheres with different fluorine-contained agents of (b) [Bmim][BF₄], (c) NH₄BF₄, (d) NaBF₄, and (e) NH₄F under hydrothermal condition at 160 °C for 2 h and (f) CeO₂/Au nanoparticle obtained by etching CeO₂ nanoparticles with [Bmim][BF₄] h in the absence of SiO₂ sphere templates under hydrothermal condition at 160 °C for 2 h.

Figure S6. Experimental and fitting core-level XPS spectra of (A) Ce3d, (B) F1S, and (C) O1S of $@CeO_2$ spheres (a) without etching treatment and $@CeO_2/Au$ nanoparticle assemblies obtained by etching $@CeO_2/Au$ spheres with different fluorine-contained agents of (b) [Bmim][BF₄], (c) NH₄BF₄, (d) NaBF₄, and (e) NH₄F under hydrothermal condition at 160 °C for 2 h and (f) CeO₂/Au nanoparticles obtained by etching CeO₂ nanoparticles with [Bmim][BF₄] in the absence of SiO₂ sphere templates under hydrothermal condition at 160 °C for 2 h.

Figure S7. The TOF of (A) $@CeO_2/Au$ nanoparticles assemblies obtained by etching $@CeO_2$ spheres with (a) [Bmim][BF₄], (b) NH₄BF₄, (c) NaBF₄, and (d) NH₄F. (B) (a) $@CeO_2/Au$ spheres without etching treatment, (b) $@CeO_2/Au$ nanoparticles assemblies obtained by etching $@CeO_2$ spheres with [Bmim][BF₄], (c) CeO₂/Au nanoparticles obtained by etching CeO₂ nanoparticles with [Bmim][BF₄] for benzyl alcohol aerobic oxidation in toluene, and (d) $@CeO_2/Au$ nanoparticles assemblies obtained by etching $@CeO_2$ spheres with [Bmim][BF₄] for benzyl alcohol aerobic oxidation in trifluorotoluene. (C) The $@CeO_2/Au$ nanoparticles assemblies obtained by etching $@CeO_2$ spheres with [Bmim][BF₄] with different theoretical Au loading contents at (a) 1 %, (b) 2 %, and (c) 3 % for benzyl alcohol aerobic oxidation in toluene.

Figure S8. (a) XRD pattern, (b) SEM, (c) TEM, and (d) HRTEM images of the CeO₂/Au nanopowders.

Figure S9. Catalytic performance of (a) $@CeO_2/Au$ nanoparticle assemblies obtained by etching $@CeO_2$ spheres with [Bmim][BF₄]; (b) CeO₂/Au nanopowders obtained via hydrothermal method. Reaction conditions: benzylic alcohol (1 mmol), catalyst (100 mg), K₂CO₃ (1 mmol), toluene (10mL), 5 h, 80 °C, oxygen atmosphere. The product was determined by HPLC using biphenyl as an internal standard.

Figure S10. Recyclability of different catalysts for benzyl alcohol aerobic oxidation. (a) @CeO₂/Au nanoparticle assemblies, (b) CeO₂/Au nanopowders, and (c) @CeO₂/Au nanoparticle assemblies calcined at 300 °C for 2 h. Reaction conditions: benzylic alcohol (1 mmol), catalyst (100 mg), K_2CO_3 (1 mmol), toluene (10 mL), 5 h, 80 °C, oxygen atmosphere. The products were determined by HPLC using biphenyl as internal standard.