Electronic supplementary information (ESI) Unique (3,9)-connected porous coordination polymers constructed by tripodal ligands with bent arms⁺

Jian-Qiang Shen,^a Yong-Sheng Wei,^{a,b} Pei-Qin Liao,^a Rui-Biao Lin,^a Dong-Dong Zhou,^a Jie-Peng Zhang,^{*a} and Xiao-Ming Chen^a

^{*a*} MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

^b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

* E-mail: zhangjp7@mail.sysu.edu.cn

Complex	1	2	3		
Formula	$C_{72}H_{43}Co_3N_6O_{13}$	$C_{72}H_{43}Co_3N_6O_{13}$	C ₇₂ H ₄₃ Co ₃ N ₃₀ O		
Formula weight	1376.91	1376.91	1521.15		
Temperature (K)	150(2)	150(2)	150(2)		
Crystal system	Trigonal	Trigonal	Trigonal		
Space group	R32	R3	<i>R</i> -3 <i>c</i>		
a/Å	24.811(1)	20.186(1)	27.3444(8)		
c/Å	21.455(2)	20.2891(8)	71.115(2)		
$V/Å^3$	11438(1)	7159.7(8)	46050(3)		
Z	6	3	12		
$D_{\rm c}/{ m g~cm^{-3}}$	1.199	0.958	0.658		
reflns coll.	22971	16498	59766		
unique reflns	5787	6431	6840		
R _{int}	0.0761	0.0667	0.0926		
$R_1 \left[I > 2\sigma(I) \right]^{[a]}$	0.0380	0.0502	0.0727		
$wR_2 [I > 2\sigma(I)]^{[b]}$	0.0826	0.1258	0.2478		
R_1 (all data)	0.0571	0.0535	0.1062		
wR_2 (all data)	0.0914	0.1282	0.2902		
GOF	1.052	1.059	1.031		
Flack	0.018(9)	0.037(12)	/		

 Table S1. Crystallographic Data and Structural Refinements.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}.$

Торо.	vertex	cs ₁	cs ₂	cs ₃	cs ₄	CS5	cs ₆	cs ₇	cs ₈	CS9	cs ₁₀	cum ₁₀	td10
wys (new)	ligand	3	22	23	116	65	272	129	494	215	782	2122	2068
	cluster	9	12	69	44	195	98	387	174	645	272	1906	
eee	ligand	3	22	23	113	65	271	129	491	215	781	2114	2062
	cluster	9	12	69	44	195	98	387	174	645	272	1906	
xmz	ligand	3	22	23	114	65	270	129	492	215	780	2114	2062
	cluster	9	12	69	44	195	98	387	174	645	272	1906	
nia-d	ligand	3	18	53	110	179	272	377	506	647	812	2978	3152
	cluster	9	32	75	134	213	308	423	554	705	872	3326	
^{a} Calculated by the TOPOS package [(a) Blatov, V. A. TOPOS, A Multipurpose Crystallochemical													

Table S2. Analysis of the topological features of the three related (3,9)-connected nets.^a

Analysis with the Program Package; Samara State University, Russia, 2004. (b) Blatov, V. A. IUCr Comp. Comm. Newsletter 2006, 7, 4 (freely available at http://iucrcomputing.ccp14.ac.uk/iucrtop/comm/ccom/newsletters/2006nov].

Figure S1. Perspective view of the coordination environment in **1** (at 50% probability; hydrogen atoms are omitted for clarity.). Symmetry codes: A = *y*, *x*, 1-*z*; B = -2/3+x, -1/3+y, -1/3+z; C = 1/3-x+y, 2/3-x, -1/3+z; D = 1-*y*, *x*-*y*, *z*; E =1-*x*+*y*, 1-*x*, *z*; F = 2/3-y, 1/3+x-y, 1/3+z; G = 2/3+x, 1/3+y, 1/3+z.

Figure S2. Perspective view of the coordination environment in **2** (at 50% probability; hydrogen atoms are omitted for clarity.). Symmetry codes: A = 2/3-x+y, 4/3-x, 1/3+z; B = 4/3-y, 2/3+x-y, 2/3+z; C = 1/3-x+y, 2/3-x, 2/3+z; D = -x+y, 1-x, z; E = 1-y, 1+x-y, z; F = 4/3-y, 2/3+x-y, -<math>1/3+z; G = 2/3-y, 1/3+x-y, -2/3+z; H = 2/3-x+y, 4/3-x, -2/3+z.

Figure S3. Perspective view of the coordination environment in **3** (at 50% probability; hydrogen atoms are omitted for clarity.). Symmetry codes: A = 1/3+x-y, 2/3-y, 7/6-z; B = 1/3-x+y, -1/3+y, 1/6+z; C = 1/3+x, 2/3+x-y, 1/6+z; 1/3+x, 2/3+x-y, 1/6+z; D = 1-y, 1+x-y, z; E = -x+y, 1-x, z; F = -1/3+x, 1/3+x-y, -1/6+z; G = 2/3-x+y, 1/3+y, -1/6+z.

Fig. S4 Parallel projections of the regular (a) **wys**, (b) **eee**, (c) **xmz** and (d) **nia-d** topologies (in their maximum symmetries) along their *c*-axes (top) and *a*-axes (bottom). Blue and red spheres represent the cores of tripodal ligands and center of trinuclear clusters, respectively.

Fig. S5 Parallel projections of the simplified coordination networks of (a) **1** (**wys**), (b) **2** (**wys**), and (c) **3** (**eee**) along their *c*-axes. Blue and red spheres represent the cores of tripodal ligands and center of trinuclear clusters, respectively.

Fig. S6. TG curves of (a) **1**, (b) **2** and (c) **3**. The small weight losses below 100 °C of the activated samples can be attributed to the adsorbed moisture.

Fig. S7. PXRD patterns of (a) 1, (b) 2 and (c) 3 after heated at different temperatures under N_2 for 30 min.