Electronic Supplementary Material (ESI) for CrystEngComm

Cu^{II}-based metal-organic nanoballs for very rapid adsorption of dyes and iodine

Eder Amayuelas,^a Arkaitz Fidalgo-Marijuán,^a Begoña Bazán,^{a,b} Miren-Karmele Urtiaga,^a Gotzone Barandika,^{*,c} and María-Isabel Arriortua.^{a,b}

^aDepartamento de Mineralogía y Petrología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia.

^bBCMaterials, Basque Center for Materials, Applications and Nanostructures, Parque Tecnológico de Zamudio, Ibaizabal Bidea, Edificio 500-Planta 1, 48160 Derio, Bizkaia. ^cDepartamento de Química Inorgánica Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, 48940

Leioa, Bizkaia.

Fig. S1 Thermodiffractometry of MOP@Ei2-1.	2				
Fig. S2 IR spectra of MOP@Ei2-1 (blue) and α MOP@Ei2-1 (red).	2				
Fig. S3 UV-Vis diffuse reflectance of MOP@Ei2-1 and αMOP@Ei2-1 .	3				
Fig. S4 IR of MOP@Ei2-1 (red) and samples of MOP@Ei2-1 after 3 days dispersed in boiling water (green) and in boiling EtOH (blue).	3				
Fig. S5 Lewis Structures of dyes used.	4				
Fig. S6 IR of αMOP@Ei2-1 and samples of αMOP@EI2-1 loaded with MB , CR and DY .					
Fig. S7-S12 (a) UV-Vis spectrum of dyes and iodine and (b) calibration line performed with solutions of different concentrations.	5 <i>,</i> 6				
Fig. S13 View of the removed quantities of dyes and iodine after 7 days.	7				
Fig. S14 Color changes of α MOP@Ei2-1 after adsorption experiments.	7				
Fig. S15 First order kinetics adjustment for (a) CR, (b) MB, (c) DY and (d) I_2 .	8				
Table S1 Molecular dimensions (Å) of dyes.	8				

Fig. S1 Thermodiffractometry of MOP@Ei2-1.

Fig. S2 IR spectra of MOP@Ei2-1 (blue) and αMOP@Ei2-1 (red).

Fig. S3 UV-Vis diffuse reflectance of MOP@Ei2-1 and αMOP@Ei2-1.

Fig. S4 IR of MOP@Ei2-1 (red) and samples of MOP@Ei2-1 after 3 days dispersed in boiling water (green) and in boiling EtOH (blue).

Fig. S5 Lewis Structures of dyes used: (a) Congo Red (**CR**), (b) Methyl Orange (**MO**), (c) Dimethyl Yellow (**DY**), (d) Rhodamine 6G (**R6G**) and (e) Methylene Blue (**MB**).

Fig. S6 IR of **αMOP@Ei2-1** and samples of **αMOP@EI2-1** loaded with **MB**, **CR** and **DY**.

Fig. S7 (a) **CR** UV-Vis spectrum and (b) calibration line performed with solutions of different concentrations of **CR** (1x10⁻⁴ M, 1x10⁻⁵ M, 1x10⁻⁶ M and 1x10⁻⁷ M). UV-Vis measurements for **CR** were performed at 496 nm.

Fig. S8 (a) **MB** UV-Vis spectrum and (b) calibration line performed with solutions of different concentrations of **MB** (1x10⁻⁴ M, 1x10⁻⁵ M, 1x10⁻⁶ M and 1x10⁻⁷ M). UV-Vis test for **MB** were measured at 610 nm.

Fig. S9 (a) **DY** UV-Vis spectrum and (b) calibration line performed with solutions of different concentrations of **DY** (1x10⁻⁴ M, 1x10⁻⁵ M, 1x10⁻⁶ M and 1x10⁻⁷ M). UV-Vis test for **DY** were measured at 408 nm.

Fig. S10 (a) **MO** UV-Vis spectrum and (b) calibration line performed with solutions of different concentrations of **MO** (1x10⁻⁴ M, 1x10⁻⁵ M, 1x10⁻⁶ M and 1x10⁻⁷ M). UV-Vis test for **MO** were measured at 465 nm.

Fig. S11 (a) **R6G** UV-Vis spectrum and (b) calibration line performed with solutions of different concentrations of **R6G** (1x10⁻⁴ M, 1x10⁻⁵ M, 1x10⁻⁶ M and 1x10⁻⁷ M). UV-Vis test for **R6G** were measured at 498 nm.

Fig. S12 (a) I_2 UV-Vis spectrum and (b) calibration line performed with solutions of different concentrations of I_2 (1x10⁻³ M, 1x10⁻⁴ M, 1x10⁻⁵ M, 1x10⁻⁶ M and 1x10⁻⁷ M). UV-Vis test for I_2 were measured at 360 nm.

Fig. S13 View of the removed quantities of dyes and iodine after 7 days.

Fig. S14 Color changes of α MOP@Ei2-1 after adsorption experiments.

Fig. S15 First order kinetics adjustment for (a) **CR**, (b) **MB**, (c) **DY** and (d) **I**₂. First range of adsorption was taken for the adjustment, until the saturation of **αMOP@Ei2-1** begins.

	MB	CR	DY	МО	R6G
x (width)	4.59	5.38	4.5	5.31	10.89
y (height)	8.01	7.9	6.0	7.25	15.72
z (lenath)	16.75	25.1	15.1	17.39	15.79

Table S1 Molecular dimensions (Å) of dyes.