Supporting information

Synthesis, Structures and Luminescent Properties of 3d-4f Heterometallic-organic Frameworks (HMOFs) Constructed by Different Copper Halide Clusters

Guang Zeng, Shanghua Xing, Xiuru Wang, Yulin Yang, Yang Xiao, Zhenhua Li, Guanghua Li,* Zhan Shi, Shouhua Feng

Synthesis of 3-(pyridine-4-yl) benzoic acid (Hpba)

Hpba was synthesized according the previous report.1 To a degassed solution of 3-Carboxyphenylboronic acid (1.70 g, 10.2 mmol), 4-bromopridine hydrochloride (2.01 g, 10.3 mmol), and sodium carbonate (2.10 g, 19.8 mmol) in 100mL of a mixed solution (1:1 CH₃CN:H₂O) at room temperature, Pd(PPh₃)₄ (0.30 g, 0.26 mmol) was added under N₂ pressure. The reaction mixture was refluxed for 22 h. the hot suspension was filtered. The filtrate was concentrated to about half of the original volume and then washed with CH₂Cl2. The aqueous layer was acidified with concentrated HCl; the resulting white precipitate was collected, washed with CH₃CN.

1. Sekiya, R.; Nishikiori, S.; Ogura, K. Inorganic Chemistry, 2006, 45, 9233.

Symmetry codes: #	±1 -x+1,-y+1,-z+1	#2 -x,-y+1,-z+1 #3 x,y,	z-1 #4 x,-y+1/2,z
Cu(1)-N(2)#3	2.058(7)		
Cu(1)-Cu(1)#4	2.791(2)	Cu(1)-N(1)	2.042(7)
I(1)-Cu(1)#4	2.7220(15)	I(2)-Cu(1)#4	2.6956(15)
Cu(1)-I(2)	2.6956(15)	Cu(1)-I(1)	2.7219(15)
Gd(1)-O(4)#2	2.437(6)	Gd(1)-O(3)#2	2.753(6)
Gd(1)-O(5)	2.394(6)	Gd(1)-O(7)	2.416(7)
Gd(1)-O(2)#2	2.349(6)	Gd(1)-O(1)	2.372(6)
Gd(1)-O(6)#1	2.312(6)	Gd(1)-O(3)	2.343(5)

Table S1. Selected bond lengths (Å) in compound $\mathbf{1}$

Table S2. Selected bond lengths (Å) in compound ${\bf 2}$

-	22(10)	Cd(1) Q(1))#1	2 262(18)
$Gu(1)$ - $O(1^{\circ})$	2.202(18)	Gu(1)-O(1')#1	2.202(18)
Gd(1)-O(3)#1	2.293(9)	Gd(1)-O(3)	2.293(9)
Gd(1)-O(2)#2	2.315(7)	Gd(1)-O(2)#3	2.315(7)
Gd(1)-O(4')#1	2.44(6)	Gd(1)-O(4')	2.44(6)
Gd(1)-O(1)	2.466(15)	Gd(1)-O(1)#1	2.466(15)
Gd(1)-O(4)	2.50(6)	Gd(1)-O(4)#1	2.50(6)
Cu(1)-N(1)	2.048(8)	Cu(1)-I(1)#4	2.6469(15)
Cu(1)-Cu(1)#5	2.660(2)	Cu(1)-Cu(1)#6	2.661(2)
Cu(1)-I(1)#6	2.6765(15)	Cu(1)-I(1)	2.7347(15)
Cu(1)-Cu(1)#4	2.759(2)	I(1)-Cu(1)#4	2.6470(15)
I(1)-Cu(1)#5	2.6765(15)		

Symmetry codes: #1 -x+1/2,y,-z+3/4; #2 -x+1/2,-y+1/2,z-1/2; #3 x+0,-y+1/2,-z+5/4; #4 -x+1,-y+1,z; #5 y,-x+1,-z+1; #6 -y+1,x,-z+1;

Gd(1)-O(4)#1	2.280(5)	Gd(1)-O(5)	2.304(5)
Gd(1)-O(6)#2	2.334(5)	Gd(1)-O(6)#2	2.334(5)
Gd(1)-O(1)	2.488(5)	Gd(1)-O(2)	2.496(5)
Gd(1)-O(7)	2.497(6)	Gd(1)-O(8)	2.518(6)
Cu(1)-N(3)#3	2.024(6)	Cu(1)-Cu(3)	2.5686(14)
Cu(1)-I(1)	2.6652(13)	Cu(1)-I(3)	2.6670(12)
Cu(1)-I(2)	2.6858(11)	Cu(1)-Cu(2)	2.7943(15)
Cu(2)-N(1)	2.029(6)	Cu(2)-I(1)	2.6254(11)
Cu(2)-I(1)#4	2.6530(12)	Cu(2)-I(2)	2.7026(13)
Cu(2)-Cu(2)#4	2.781(2)	Cu(3)-N(2)	1.979(6)
Cu(3)-I(3)	2.5220(11)	Cu(3)-I(2)	2.5652(12)
I(1)-Cu(2)#4	2.6531(12)		

Table S3. Selected bond lengths (Å) in compound $\mathbf{3}$

Symmetry codes: #1 -x+1,-y+2,-z+1 #2 -x+1,-y+1,-z+1 #3 x-1/2,-y+1/2,z-1/2 #4 -x+1/2,-y+1/2,-z+1 #5 x+1/2,-y+1/2,z+1/2

Gd(1)-O(2)#1	2.304(4)	Gd(1)-O(6)#2	2.325(4)
Gd(1)-O(4)#1	2.350(4)	Gd(1)-O(5)	2.357(3)
Gd(1)-O(3)	2.371(4)	Gd(1)-O(1)	2.382(3)
Gd(1)-O(8)	2.471(5)	Gd(1)-O(7)	2.663(6)
Cu(1)-N(1)	2.008(5)	Cu(1)-I(3)	2.6305(10)
Cu(1)-Cu(4)	2.6449(14)	Cu(1)-Cu(3)	2.6621(14)
Cu(1)-I(2)	2.7045(11)	Cu(1)-Cu(2)	2.7142(13)
Cu(1)-I(1)	2.7585(15)	Cu(2)-I(4)#3	2.6845(11)
Cu(2)-I(1)	2.6940(12)	Cu(2)-I(4)	2.6972(11)
Cu(2)-I(2)	2.7161(13)	Cu(2)-Cu(3)	2.7668(13)
Cu(2)-Cu(4)	2.8142(15)	Cu(2)-Cu(2)#3	2.8709(18)
Cu(3)-N(2)#4	2.011(5)	Cu(3)-I(1)	2.5643(12)
Cu(3)-I(3)	2.6709(13)	Cu(3)-Cu(4)	2.7268(16)
Cu(3)-I(4)	2.8449(13)	Cu(4)-N(3)#5	2.030(5)
Cu(4)-I(2)	2.6238(11)	Cu(4)-I(3)	2.7157(11)
Cu(4)-I(4)	2.7189(11)	I(4)-Cu(2)#3	2.6844(11)

Table S4. Selected bond lengths (Å) in compound ${\bf 4}$

Symmetry codes: #1 -x+2,-y,-z+1 #2 -x+1,-y,-z+1 #3 -x+1,-y+1,-z #4 -x+1,y+1,-z+1 #5 x-1,y,z-1 #6 x+1,y,z+1

Name	Calculated		Found			
	C (%)	H (%)	N (%)	C (%)	H (%)	N (%)
Compound 1	31.65	2.51	7.03	31.39	2.46	7.17
Compound 2	25.78	1.94	5.73	25.59	1.78	5.87
Compound 3	32.87	2.31	3.05	32.69	2.19	2.94
Ground sample	—	-	—	32.71	2.17	2.95
of Compound 3						
Compound 4	31.19	2.71	2.37	31.30	2.56	2.47

Table S5. Elemental analyses of the four compounds and ground sample of compound ${\bf 3}$

Figure S1. The XRD patterns of compound 1.

Figure S2. The XRD patterns of compound 2.

Figure S3. The XRD patterns of compound 3 ground sample of 3.

Figure S4. The XRD patterns of compound 4, 4a and the crystal powder of 4a after soaking in 1, 4-dioxane solvent.

Figure S5. Thermogravimetric analysis curves of compound 1, 2, 3, 4 and 4a. The results suggest the guest solvents have been remved.

Figure S6. The IR spectra of compound 1, 2, 3 and 4.

Figure S7. The IR spectra of 1, 4-dioxane, compound **4** and **4a**. The characteristic IR absorption peaks of 1, 4-dioxane has disappeared in the IR spectra of 4a. These results are well consistent with the TG analysis curves.

Figure S8. The Cu 2p XPS spectra of compound 3 and the ground sample of compound 3.

Figure S9. The Gd 4d XPS spectra of compound 3 and the ground sample of compound 3.